|
@@ -12,18 +12,7 @@ VECTOR_SEARCH_TOP_K = 6
|
|
|
|
|
|
# LLM input history length
|
|
|
LLM_HISTORY_LEN = 3
|
|
|
-<<<<<<< HEAD
|
|
|
-=======
|
|
|
|
|
|
-<<<<<<< HEAD
|
|
|
->>>>>>> f87a5f5 (fix bug in webui.py)
|
|
|
-=======
|
|
|
-# return top-k text chunk from vector store
|
|
|
-VECTOR_SEARCH_TOP_K = 6
|
|
|
-
|
|
|
-# LLM input history length
|
|
|
-LLM_HISTORY_LEN = 3
|
|
|
->>>>>>> cba44ca (修复 webui.py 中 llm_history_len 和 vector_search_top_k 显示值与启动设置默认值不一致的问题)
|
|
|
|
|
|
def get_file_list():
|
|
|
if not os.path.exists("content"):
|
|
@@ -31,7 +20,14 @@ def get_file_list():
|
|
|
return [f for f in os.listdir("content")]
|
|
|
|
|
|
|
|
|
+def get_vs_list():
|
|
|
+ if not os.path.exists("vector_store"):
|
|
|
+ return []
|
|
|
+ return [f for f in os.listdir("vector_store")]
|
|
|
+
|
|
|
+
|
|
|
file_list = get_file_list()
|
|
|
+vs_list = get_vs_list()
|
|
|
|
|
|
embedding_model_dict_list = list(embedding_model_dict.keys())
|
|
|
|
|
@@ -40,22 +36,30 @@ llm_model_dict_list = list(llm_model_dict.keys())
|
|
|
local_doc_qa = LocalDocQA()
|
|
|
|
|
|
|
|
|
-def upload_file(file):
|
|
|
+def upload_file(file, chatbot):
|
|
|
if not os.path.exists("content"):
|
|
|
os.mkdir("content")
|
|
|
filename = os.path.basename(file.name)
|
|
|
shutil.move(file.name, "content/" + filename)
|
|
|
# file_list首位插入新上传的文件
|
|
|
file_list.insert(0, filename)
|
|
|
- return gr.Dropdown.update(choices=file_list, value=filename)
|
|
|
+ status = "已将xx上传至xxx"
|
|
|
+ return chatbot + [None, status]
|
|
|
|
|
|
|
|
|
def get_answer(query, vs_path, history):
|
|
|
if vs_path:
|
|
|
resp, history = local_doc_qa.get_knowledge_based_answer(
|
|
|
query=query, vs_path=vs_path, chat_history=history)
|
|
|
+ source = "".join([f"""<details> <summary>出处 {i + 1}</summary>
|
|
|
+{doc.page_content}
|
|
|
+
|
|
|
+<b>所属文件:</b>{doc.metadata["source"]}
|
|
|
+</details>""" for i, doc in enumerate(resp["source_documents"])])
|
|
|
+ history[-1][-1] += source
|
|
|
else:
|
|
|
- history = history + [[None, "请先加载文件后,再进行提问。"]]
|
|
|
+ resp = local_doc_qa.llm._call(query)
|
|
|
+ history = history + [[None, resp + "\n如需基于知识库进行问答,请先加载知识库后,再进行提问。"]]
|
|
|
return history, ""
|
|
|
|
|
|
|
|
@@ -68,6 +72,7 @@ def update_status(history, status):
|
|
|
def init_model():
|
|
|
try:
|
|
|
local_doc_qa.init_cfg()
|
|
|
+ local_doc_qa.llm._call("你好")
|
|
|
return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
|
|
|
except Exception as e:
|
|
|
print(e)
|
|
@@ -88,7 +93,6 @@ def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, to
|
|
|
return history + [[None, model_status]]
|
|
|
|
|
|
|
|
|
-
|
|
|
def get_vector_store(filepath, history):
|
|
|
if local_doc_qa.llm and local_doc_qa.embeddings:
|
|
|
vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath])
|
|
@@ -120,71 +124,79 @@ webui_title = """
|
|
|
"""
|
|
|
|
|
|
init_message = """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
|
|
|
-1. 选择语言模型、Embedding 模型及相关参数,如果使用ptuning-v2方式微调过模型,将PrefixEncoder模型放在ptuning-v2文件夹里并勾选相关选项,然后点击"重新加载模型",并等待加载完成提示
|
|
|
+1. 选择语言模型、Embedding 模型及相关参数,如果使用 ptuning-v2 方式微调过模型,将 PrefixEncoder 模型放在 ptuning-v2 文件夹里并勾选相关选项,然后点击"重新加载模型",并等待加载完成提示
|
|
|
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示
|
|
|
3. 输入要提交的问题后,点击回车提交 """
|
|
|
|
|
|
-
|
|
|
model_status = init_model()
|
|
|
|
|
|
with gr.Blocks(css=block_css) as demo:
|
|
|
vs_path, file_status, model_status = gr.State(""), gr.State(""), gr.State(model_status)
|
|
|
gr.Markdown(webui_title)
|
|
|
- with gr.Row():
|
|
|
- with gr.Column(scale=2):
|
|
|
- chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
|
|
|
- elem_id="chat-box",
|
|
|
- show_label=False).style(height=750)
|
|
|
- query = gr.Textbox(show_label=False,
|
|
|
- placeholder="请输入提问内容,按回车进行提交",
|
|
|
- ).style(container=False)
|
|
|
-
|
|
|
- with gr.Column(scale=1):
|
|
|
- llm_model = gr.Radio(llm_model_dict_list,
|
|
|
- label="LLM 模型",
|
|
|
- value=LLM_MODEL,
|
|
|
- interactive=True)
|
|
|
- llm_history_len = gr.Slider(0,
|
|
|
- 10,
|
|
|
- value=LLM_HISTORY_LEN,
|
|
|
- step=1,
|
|
|
- label="LLM history len",
|
|
|
- interactive=True)
|
|
|
- use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
|
|
|
- label="使用p-tuning-v2微调过的模型",
|
|
|
- interactive=True)
|
|
|
- embedding_model = gr.Radio(embedding_model_dict_list,
|
|
|
- label="Embedding 模型",
|
|
|
- value=EMBEDDING_MODEL,
|
|
|
- interactive=True)
|
|
|
- top_k = gr.Slider(1,
|
|
|
- 20,
|
|
|
- value=VECTOR_SEARCH_TOP_K,
|
|
|
- step=1,
|
|
|
- label="向量匹配 top k",
|
|
|
- interactive=True)
|
|
|
- load_model_button = gr.Button("重新加载模型")
|
|
|
-
|
|
|
- # with gr.Column():
|
|
|
- with gr.Tab("select"):
|
|
|
- selectFile = gr.Dropdown(file_list,
|
|
|
- label="content file",
|
|
|
+ with gr.Tab("聊天"):
|
|
|
+ with gr.Row():
|
|
|
+ with gr.Column(scale=2):
|
|
|
+ chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
|
|
|
+ elem_id="chat-box",
|
|
|
+ show_label=False).style(height=750)
|
|
|
+ query = gr.Textbox(show_label=False,
|
|
|
+ placeholder="请输入提问内容,按回车进行提交",
|
|
|
+ ).style(container=False)
|
|
|
+
|
|
|
+ with gr.Column(scale=1):
|
|
|
+ # with gr.Column():
|
|
|
+ # with gr.Tab("select"):
|
|
|
+ selectFile = gr.Dropdown(vs_list,
|
|
|
+ label="请选择要加载的知识库",
|
|
|
interactive=True,
|
|
|
- value=file_list[0] if len(file_list) > 0 else None)
|
|
|
- with gr.Tab("upload"):
|
|
|
- file = gr.File(label="content file",
|
|
|
- file_types=['.txt', '.md', '.docx', '.pdf']
|
|
|
- ) # .style(height=100)
|
|
|
- load_file_button = gr.Button("加载文件")
|
|
|
+ value=vs_list[0] if len(vs_list) > 0 else None)
|
|
|
+ #
|
|
|
+ gr.Markdown("向知识库中添加文件")
|
|
|
+ with gr.Tab("上传文件"):
|
|
|
+ files = gr.File(label="向知识库中添加文件",
|
|
|
+ file_types=['.txt', '.md', '.docx', '.pdf'],
|
|
|
+ file_count="multiple"
|
|
|
+ ) # .style(height=100)
|
|
|
+ with gr.Tab("上传文件夹"):
|
|
|
+ files = gr.File(label="向知识库中添加文件",
|
|
|
+ file_types=['.txt', '.md', '.docx', '.pdf'],
|
|
|
+ file_count="directory"
|
|
|
+ ) # .style(height=100)
|
|
|
+ load_file_button = gr.Button("加载知识库")
|
|
|
+ with gr.Tab("模型配置"):
|
|
|
+ llm_model = gr.Radio(llm_model_dict_list,
|
|
|
+ label="LLM 模型",
|
|
|
+ value=LLM_MODEL,
|
|
|
+ interactive=True)
|
|
|
+ llm_history_len = gr.Slider(0,
|
|
|
+ 10,
|
|
|
+ value=LLM_HISTORY_LEN,
|
|
|
+ step=1,
|
|
|
+ label="LLM history len",
|
|
|
+ interactive=True)
|
|
|
+ use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
|
|
|
+ label="使用p-tuning-v2微调过的模型",
|
|
|
+ interactive=True)
|
|
|
+ embedding_model = gr.Radio(embedding_model_dict_list,
|
|
|
+ label="Embedding 模型",
|
|
|
+ value=EMBEDDING_MODEL,
|
|
|
+ interactive=True)
|
|
|
+ top_k = gr.Slider(1,
|
|
|
+ 20,
|
|
|
+ value=VECTOR_SEARCH_TOP_K,
|
|
|
+ step=1,
|
|
|
+ label="向量匹配 top k",
|
|
|
+ interactive=True)
|
|
|
+ load_model_button = gr.Button("重新加载模型")
|
|
|
load_model_button.click(reinit_model,
|
|
|
show_progress=True,
|
|
|
inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, chatbot],
|
|
|
outputs=chatbot
|
|
|
)
|
|
|
# 将上传的文件保存到content文件夹下,并更新下拉框
|
|
|
- file.upload(upload_file,
|
|
|
- inputs=file,
|
|
|
- outputs=selectFile)
|
|
|
+ files.upload(upload_file,
|
|
|
+ inputs=[files, chatbot],
|
|
|
+ outputs=chatbot)
|
|
|
load_file_button.click(get_vector_store,
|
|
|
show_progress=True,
|
|
|
inputs=[selectFile, chatbot],
|