local_doc_qa.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. from langchain.chains import RetrievalQA
  2. from langchain.prompts import PromptTemplate
  3. from langchain.embeddings.huggingface import HuggingFaceEmbeddings
  4. from langchain.vectorstores import FAISS
  5. from langchain.document_loaders import UnstructuredFileLoader
  6. from models.chatglm_llm import ChatGLM
  7. import sentence_transformers
  8. import os
  9. from configs.model_config import *
  10. import datetime
  11. from typing import List
  12. from textsplitter import ChineseTextSplitter
  13. # return top-k text chunk from vector store
  14. VECTOR_SEARCH_TOP_K = 6
  15. # LLM input history length
  16. LLM_HISTORY_LEN = 3
  17. def load_file(filepath):
  18. if filepath.lower().endswith(".pdf"):
  19. loader = UnstructuredFileLoader(filepath)
  20. textsplitter = ChineseTextSplitter(pdf=True)
  21. docs = loader.load_and_split(textsplitter)
  22. else:
  23. loader = UnstructuredFileLoader(filepath, mode="elements")
  24. textsplitter = ChineseTextSplitter(pdf=False)
  25. docs = loader.load_and_split(text_splitter=textsplitter)
  26. return docs
  27. class LocalDocQA:
  28. llm: object = None
  29. embeddings: object = None
  30. def init_cfg(self,
  31. embedding_model: str = EMBEDDING_MODEL,
  32. embedding_device=EMBEDDING_DEVICE,
  33. llm_history_len: int = LLM_HISTORY_LEN,
  34. llm_model: str = LLM_MODEL,
  35. llm_device=LLM_DEVICE,
  36. top_k=VECTOR_SEARCH_TOP_K,
  37. ):
  38. self.llm = ChatGLM()
  39. self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
  40. llm_device=llm_device)
  41. self.llm.history_len = llm_history_len
  42. self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model], )
  43. self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name,
  44. device=embedding_device)
  45. self.top_k = top_k
  46. def init_knowledge_vector_store(self,
  47. filepath: str or List[str]):
  48. if isinstance(filepath, str):
  49. if not os.path.exists(filepath):
  50. print("路径不存在")
  51. return None
  52. elif os.path.isfile(filepath):
  53. file = os.path.split(filepath)[-1]
  54. try:
  55. docs = load_file(filepath)
  56. print(f"{file} 已成功加载")
  57. except Exception as e:
  58. print(e)
  59. print(f"{file} 未能成功加载")
  60. return None
  61. elif os.path.isdir(filepath):
  62. docs = []
  63. for file in os.listdir(filepath):
  64. fullfilepath = os.path.join(filepath, file)
  65. try:
  66. docs += load_file(fullfilepath)
  67. print(f"{file} 已成功加载")
  68. except Exception as e:
  69. print(e)
  70. print(f"{file} 未能成功加载")
  71. else:
  72. docs = []
  73. for file in filepath:
  74. try:
  75. docs += load_file(file)
  76. print(f"{file} 已成功加载")
  77. except Exception as e:
  78. print(e)
  79. print(f"{file} 未能成功加载")
  80. vector_store = FAISS.from_documents(docs, self.embeddings)
  81. vs_path = f"""./vector_store/{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
  82. vector_store.save_local(vs_path)
  83. return vs_path if len(docs) > 0 else None
  84. def get_knowledge_based_answer(self,
  85. query,
  86. vs_path,
  87. chat_history=[], ):
  88. prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
  89. 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
  90. 已知内容:
  91. {context}
  92. 问题:
  93. {question}"""
  94. prompt = PromptTemplate(
  95. template=prompt_template,
  96. input_variables=["context", "question"]
  97. )
  98. self.llm.history = chat_history
  99. vector_store = FAISS.load_local(vs_path, self.embeddings)
  100. knowledge_chain = RetrievalQA.from_llm(
  101. llm=self.llm,
  102. retriever=vector_store.as_retriever(search_kwargs={"k": self.top_k}),
  103. prompt=prompt
  104. )
  105. knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
  106. input_variables=["page_content"], template="{page_content}"
  107. )
  108. knowledge_chain.return_source_documents = True
  109. result = knowledge_chain({"query": query})
  110. self.llm.history[-1][0] = query
  111. return result, self.llm.history