123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- from __future__ import annotations
- import logging
- import os
- from functools import cached_property
- from typing import TYPE_CHECKING, Callable
- import cv2
- import numpy as np
- import torch
- from modules import devices, errors, face_restoration, shared
- if TYPE_CHECKING:
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
- logger = logging.getLogger(__name__)
- def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
- """Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
- assert img.shape[2] == 3, "image must be RGB"
- if img.dtype == "float64":
- img = img.astype("float32")
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- return torch.from_numpy(img.transpose(2, 0, 1)).float()
- def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
- """
- Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
- """
- tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
- tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
- assert tensor.dim() == 3, "tensor must be RGB"
- img_np = tensor.numpy().transpose(1, 2, 0)
- if img_np.shape[2] == 1: # gray image, no RGB/BGR required
- return np.squeeze(img_np, axis=2)
- return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
- def create_face_helper(device) -> FaceRestoreHelper:
- from facexlib.detection import retinaface
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
- if hasattr(retinaface, 'device'):
- retinaface.device = device
- return FaceRestoreHelper(
- upscale_factor=1,
- face_size=512,
- crop_ratio=(1, 1),
- det_model='retinaface_resnet50',
- save_ext='png',
- use_parse=True,
- device=device,
- )
- def restore_with_face_helper(
- np_image: np.ndarray,
- face_helper: FaceRestoreHelper,
- restore_face: Callable[[torch.Tensor], torch.Tensor],
- ) -> np.ndarray:
- """
- Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image.
- `restore_face` should take a cropped face image and return a restored face image.
- """
- from torchvision.transforms.functional import normalize
- np_image = np_image[:, :, ::-1]
- original_resolution = np_image.shape[0:2]
- try:
- logger.debug("Detecting faces...")
- face_helper.clean_all()
- face_helper.read_image(np_image)
- face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
- face_helper.align_warp_face()
- logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
- for cropped_face in face_helper.cropped_faces:
- cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
- normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
- try:
- with torch.no_grad():
- cropped_face_t = restore_face(cropped_face_t)
- devices.torch_gc()
- except Exception:
- errors.report('Failed face-restoration inference', exc_info=True)
- restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
- restored_face = (restored_face * 255.0).astype('uint8')
- face_helper.add_restored_face(restored_face)
- logger.debug("Merging restored faces into image")
- face_helper.get_inverse_affine(None)
- img = face_helper.paste_faces_to_input_image()
- img = img[:, :, ::-1]
- if original_resolution != img.shape[0:2]:
- img = cv2.resize(
- img,
- (0, 0),
- fx=original_resolution[1] / img.shape[1],
- fy=original_resolution[0] / img.shape[0],
- interpolation=cv2.INTER_LINEAR,
- )
- logger.debug("Face restoration complete")
- finally:
- face_helper.clean_all()
- return img
- class CommonFaceRestoration(face_restoration.FaceRestoration):
- net: torch.Module | None
- model_url: str
- model_download_name: str
- def __init__(self, model_path: str):
- super().__init__()
- self.net = None
- self.model_path = model_path
- os.makedirs(model_path, exist_ok=True)
- @cached_property
- def face_helper(self) -> FaceRestoreHelper:
- return create_face_helper(self.get_device())
- def send_model_to(self, device):
- if self.net:
- logger.debug("Sending %s to %s", self.net, device)
- self.net.to(device)
- if self.face_helper:
- logger.debug("Sending face helper to %s", device)
- self.face_helper.face_det.to(device)
- self.face_helper.face_parse.to(device)
- def get_device(self):
- raise NotImplementedError("get_device must be implemented by subclasses")
- def load_net(self) -> torch.Module:
- raise NotImplementedError("load_net must be implemented by subclasses")
- def restore_with_helper(
- self,
- np_image: np.ndarray,
- restore_face: Callable[[torch.Tensor], torch.Tensor],
- ) -> np.ndarray:
- try:
- if self.net is None:
- self.net = self.load_net()
- except Exception:
- logger.warning("Unable to load face-restoration model", exc_info=True)
- return np_image
- try:
- self.send_model_to(self.get_device())
- return restore_with_face_helper(np_image, self.face_helper, restore_face)
- finally:
- if shared.opts.face_restoration_unload:
- self.send_model_to(devices.cpu)
- def patch_facexlib(dirname: str) -> None:
- import facexlib.detection
- import facexlib.parsing
- det_facex_load_file_from_url = facexlib.detection.load_file_from_url
- par_facex_load_file_from_url = facexlib.parsing.load_file_from_url
- def update_kwargs(kwargs):
- return dict(kwargs, save_dir=dirname, model_dir=None)
- def facex_load_file_from_url(**kwargs):
- return det_facex_load_file_from_url(**update_kwargs(kwargs))
- def facex_load_file_from_url2(**kwargs):
- return par_facex_load_file_from_url(**update_kwargs(kwargs))
- facexlib.detection.load_file_from_url = facex_load_file_from_url
- facexlib.parsing.load_file_from_url = facex_load_file_from_url2
|