mcf5208.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /*
  2. * Motorola ColdFire MCF5208 SoC emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. *
  8. * This file models both the MCF5208 SoC, and the
  9. * MCF5208EVB evaluation board. For details see
  10. *
  11. * "MCF5208 Reference Manual"
  12. * https://www.nxp.com/docs/en/reference-manual/MCF5208RM.pdf
  13. * "M5208EVB-RevB 32-bit Microcontroller User Manual"
  14. * https://www.nxp.com/docs/en/reference-manual/M5208EVBUM.pdf
  15. */
  16. #include "qemu/osdep.h"
  17. #include "qemu/units.h"
  18. #include "qemu/error-report.h"
  19. #include "qemu/log.h"
  20. #include "qapi/error.h"
  21. #include "qemu/datadir.h"
  22. #include "cpu.h"
  23. #include "hw/irq.h"
  24. #include "hw/m68k/mcf.h"
  25. #include "hw/m68k/mcf_fec.h"
  26. #include "qemu/timer.h"
  27. #include "hw/ptimer.h"
  28. #include "system/system.h"
  29. #include "system/qtest.h"
  30. #include "net/net.h"
  31. #include "hw/boards.h"
  32. #include "hw/loader.h"
  33. #include "hw/sysbus.h"
  34. #include "elf.h"
  35. #define SYS_FREQ 166666666
  36. #define ROM_SIZE 0x200000
  37. #define PCSR_EN 0x0001
  38. #define PCSR_RLD 0x0002
  39. #define PCSR_PIF 0x0004
  40. #define PCSR_PIE 0x0008
  41. #define PCSR_OVW 0x0010
  42. #define PCSR_DBG 0x0020
  43. #define PCSR_DOZE 0x0040
  44. #define PCSR_PRE_SHIFT 8
  45. #define PCSR_PRE_MASK 0x0f00
  46. #define RCR_SOFTRST 0x80
  47. typedef struct {
  48. MemoryRegion iomem;
  49. qemu_irq irq;
  50. ptimer_state *timer;
  51. uint16_t pcsr;
  52. uint16_t pmr;
  53. uint16_t pcntr;
  54. } m5208_timer_state;
  55. static void m5208_timer_update(m5208_timer_state *s)
  56. {
  57. if ((s->pcsr & (PCSR_PIE | PCSR_PIF)) == (PCSR_PIE | PCSR_PIF))
  58. qemu_irq_raise(s->irq);
  59. else
  60. qemu_irq_lower(s->irq);
  61. }
  62. static void m5208_timer_write(void *opaque, hwaddr offset,
  63. uint64_t value, unsigned size)
  64. {
  65. m5208_timer_state *s = (m5208_timer_state *)opaque;
  66. int prescale;
  67. int limit;
  68. switch (offset) {
  69. case 0:
  70. /* The PIF bit is set-to-clear. */
  71. if (value & PCSR_PIF) {
  72. s->pcsr &= ~PCSR_PIF;
  73. value &= ~PCSR_PIF;
  74. }
  75. /* Avoid frobbing the timer if we're just twiddling IRQ bits. */
  76. if (((s->pcsr ^ value) & ~PCSR_PIE) == 0) {
  77. s->pcsr = value;
  78. m5208_timer_update(s);
  79. return;
  80. }
  81. ptimer_transaction_begin(s->timer);
  82. if (s->pcsr & PCSR_EN)
  83. ptimer_stop(s->timer);
  84. s->pcsr = value;
  85. prescale = 1 << ((s->pcsr & PCSR_PRE_MASK) >> PCSR_PRE_SHIFT);
  86. ptimer_set_freq(s->timer, (SYS_FREQ / 2) / prescale);
  87. if (s->pcsr & PCSR_RLD)
  88. limit = s->pmr;
  89. else
  90. limit = 0xffff;
  91. ptimer_set_limit(s->timer, limit, 0);
  92. if (s->pcsr & PCSR_EN)
  93. ptimer_run(s->timer, 0);
  94. ptimer_transaction_commit(s->timer);
  95. break;
  96. case 2:
  97. ptimer_transaction_begin(s->timer);
  98. s->pmr = value;
  99. s->pcsr &= ~PCSR_PIF;
  100. if ((s->pcsr & PCSR_RLD) == 0) {
  101. if (s->pcsr & PCSR_OVW)
  102. ptimer_set_count(s->timer, value);
  103. } else {
  104. ptimer_set_limit(s->timer, value, s->pcsr & PCSR_OVW);
  105. }
  106. ptimer_transaction_commit(s->timer);
  107. break;
  108. case 4:
  109. break;
  110. default:
  111. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
  112. __func__, offset);
  113. return;
  114. }
  115. m5208_timer_update(s);
  116. }
  117. static void m5208_timer_trigger(void *opaque)
  118. {
  119. m5208_timer_state *s = (m5208_timer_state *)opaque;
  120. s->pcsr |= PCSR_PIF;
  121. m5208_timer_update(s);
  122. }
  123. static uint64_t m5208_timer_read(void *opaque, hwaddr addr,
  124. unsigned size)
  125. {
  126. m5208_timer_state *s = (m5208_timer_state *)opaque;
  127. switch (addr) {
  128. case 0:
  129. return s->pcsr;
  130. case 2:
  131. return s->pmr;
  132. case 4:
  133. return ptimer_get_count(s->timer);
  134. default:
  135. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
  136. __func__, addr);
  137. return 0;
  138. }
  139. }
  140. static const MemoryRegionOps m5208_timer_ops = {
  141. .read = m5208_timer_read,
  142. .write = m5208_timer_write,
  143. .endianness = DEVICE_BIG_ENDIAN,
  144. };
  145. static uint64_t m5208_sys_read(void *opaque, hwaddr addr,
  146. unsigned size)
  147. {
  148. switch (addr) {
  149. case 0x110: /* SDCS0 */
  150. {
  151. int n;
  152. for (n = 0; n < 32; n++) {
  153. if (current_machine->ram_size < (2ULL << n)) {
  154. break;
  155. }
  156. }
  157. return (n - 1) | 0x40000000;
  158. }
  159. case 0x114: /* SDCS1 */
  160. return 0;
  161. default:
  162. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
  163. __func__, addr);
  164. return 0;
  165. }
  166. }
  167. static void m5208_sys_write(void *opaque, hwaddr addr,
  168. uint64_t value, unsigned size)
  169. {
  170. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
  171. __func__, addr);
  172. }
  173. static const MemoryRegionOps m5208_sys_ops = {
  174. .read = m5208_sys_read,
  175. .write = m5208_sys_write,
  176. .endianness = DEVICE_BIG_ENDIAN,
  177. };
  178. static uint64_t m5208_rcm_read(void *opaque, hwaddr addr,
  179. unsigned size)
  180. {
  181. return 0;
  182. }
  183. static void m5208_rcm_write(void *opaque, hwaddr addr,
  184. uint64_t value, unsigned size)
  185. {
  186. M68kCPU *cpu = opaque;
  187. CPUState *cs = CPU(cpu);
  188. switch (addr) {
  189. case 0x0: /* RCR */
  190. if (value & RCR_SOFTRST) {
  191. cpu_reset(cs);
  192. cpu->env.aregs[7] = ldl_phys(cs->as, 0);
  193. cpu->env.pc = ldl_phys(cs->as, 4);
  194. }
  195. break;
  196. default:
  197. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIX "\n",
  198. __func__, addr);
  199. break;
  200. }
  201. }
  202. static const MemoryRegionOps m5208_rcm_ops = {
  203. .read = m5208_rcm_read,
  204. .write = m5208_rcm_write,
  205. .endianness = DEVICE_BIG_ENDIAN,
  206. };
  207. static void mcf5208_sys_init(MemoryRegion *address_space, qemu_irq *pic,
  208. M68kCPU *cpu)
  209. {
  210. MemoryRegion *iomem = g_new(MemoryRegion, 1);
  211. MemoryRegion *iomem_rcm = g_new(MemoryRegion, 1);
  212. m5208_timer_state *s;
  213. int i;
  214. /* RCM */
  215. memory_region_init_io(iomem_rcm, NULL, &m5208_rcm_ops, cpu,
  216. "m5208-rcm", 0x00000080);
  217. memory_region_add_subregion(address_space, 0xfc0a0000, iomem_rcm);
  218. /* SDRAMC. */
  219. memory_region_init_io(iomem, NULL, &m5208_sys_ops, NULL, "m5208-sys", 0x00004000);
  220. memory_region_add_subregion(address_space, 0xfc0a8000, iomem);
  221. /* Timers. */
  222. for (i = 0; i < 2; i++) {
  223. s = g_new0(m5208_timer_state, 1);
  224. s->timer = ptimer_init(m5208_timer_trigger, s, PTIMER_POLICY_LEGACY);
  225. memory_region_init_io(&s->iomem, NULL, &m5208_timer_ops, s,
  226. "m5208-timer", 0x00004000);
  227. memory_region_add_subregion(address_space, 0xfc080000 + 0x4000 * i,
  228. &s->iomem);
  229. s->irq = pic[4 + i];
  230. }
  231. }
  232. static void mcf_fec_init(MemoryRegion *sysmem, hwaddr base, qemu_irq *irqs)
  233. {
  234. DeviceState *dev;
  235. SysBusDevice *s;
  236. int i;
  237. dev = qemu_create_nic_device(TYPE_MCF_FEC_NET, true, NULL);
  238. if (!dev) {
  239. return;
  240. }
  241. s = SYS_BUS_DEVICE(dev);
  242. sysbus_realize_and_unref(s, &error_fatal);
  243. for (i = 0; i < FEC_NUM_IRQ; i++) {
  244. sysbus_connect_irq(s, i, irqs[i]);
  245. }
  246. memory_region_add_subregion(sysmem, base, sysbus_mmio_get_region(s, 0));
  247. }
  248. static void mcf5208evb_init(MachineState *machine)
  249. {
  250. ram_addr_t ram_size = machine->ram_size;
  251. const char *kernel_filename = machine->kernel_filename;
  252. M68kCPU *cpu;
  253. CPUM68KState *env;
  254. int kernel_size;
  255. uint64_t elf_entry;
  256. hwaddr entry;
  257. qemu_irq *pic;
  258. MemoryRegion *address_space_mem = get_system_memory();
  259. MemoryRegion *rom = g_new(MemoryRegion, 1);
  260. MemoryRegion *sram = g_new(MemoryRegion, 1);
  261. cpu = M68K_CPU(cpu_create(machine->cpu_type));
  262. env = &cpu->env;
  263. /* Initialize CPU registers. */
  264. env->vbr = 0;
  265. /* TODO: Configure BARs. */
  266. /* ROM at 0x00000000 */
  267. memory_region_init_rom(rom, NULL, "mcf5208.rom", ROM_SIZE, &error_fatal);
  268. memory_region_add_subregion(address_space_mem, 0x00000000, rom);
  269. /* DRAM at 0x40000000 */
  270. memory_region_add_subregion(address_space_mem, 0x40000000, machine->ram);
  271. /* Internal SRAM. */
  272. memory_region_init_ram(sram, NULL, "mcf5208.sram", 16 * KiB, &error_fatal);
  273. memory_region_add_subregion(address_space_mem, 0x80000000, sram);
  274. /* Internal peripherals. */
  275. pic = mcf_intc_init(address_space_mem, 0xfc048000, cpu);
  276. mcf_uart_create_mmap(0xfc060000, pic[26], serial_hd(0));
  277. mcf_uart_create_mmap(0xfc064000, pic[27], serial_hd(1));
  278. mcf_uart_create_mmap(0xfc068000, pic[28], serial_hd(2));
  279. mcf5208_sys_init(address_space_mem, pic, cpu);
  280. mcf_fec_init(address_space_mem, 0xfc030000, pic + 36);
  281. g_free(pic);
  282. /* 0xfc000000 SCM. */
  283. /* 0xfc004000 XBS. */
  284. /* 0xfc008000 FlexBus CS. */
  285. /* 0xfc030000 FEC. */
  286. /* 0xfc040000 SCM + Power management. */
  287. /* 0xfc044000 eDMA. */
  288. /* 0xfc048000 INTC. */
  289. /* 0xfc058000 I2C. */
  290. /* 0xfc05c000 QSPI. */
  291. /* 0xfc060000 UART0. */
  292. /* 0xfc064000 UART0. */
  293. /* 0xfc068000 UART0. */
  294. /* 0xfc070000 DMA timers. */
  295. /* 0xfc080000 PIT0. */
  296. /* 0xfc084000 PIT1. */
  297. /* 0xfc088000 EPORT. */
  298. /* 0xfc08c000 Watchdog. */
  299. /* 0xfc090000 clock module. */
  300. /* 0xfc0a0000 CCM + reset. */
  301. /* 0xfc0a4000 GPIO. */
  302. /* 0xfc0a8000 SDRAM controller. */
  303. /* Load firmware */
  304. if (machine->firmware) {
  305. char *fn;
  306. uint8_t *ptr;
  307. fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, machine->firmware);
  308. if (!fn) {
  309. error_report("Could not find ROM image '%s'", machine->firmware);
  310. exit(1);
  311. }
  312. if (load_image_targphys(fn, 0x0, ROM_SIZE) < 8) {
  313. error_report("Could not load ROM image '%s'", machine->firmware);
  314. exit(1);
  315. }
  316. g_free(fn);
  317. /* Initial PC is always at offset 4 in firmware binaries */
  318. ptr = rom_ptr(0x4, 4);
  319. assert(ptr != NULL);
  320. env->pc = ldl_be_p(ptr);
  321. }
  322. /* Load kernel. */
  323. if (!kernel_filename) {
  324. if (qtest_enabled() || machine->firmware) {
  325. return;
  326. }
  327. error_report("Kernel image must be specified");
  328. exit(1);
  329. }
  330. kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, &elf_entry,
  331. NULL, NULL, NULL, ELFDATA2MSB, EM_68K, 0, 0);
  332. entry = elf_entry;
  333. if (kernel_size < 0) {
  334. kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL,
  335. NULL, NULL);
  336. }
  337. if (kernel_size < 0) {
  338. kernel_size = load_image_targphys(kernel_filename, 0x40000000,
  339. ram_size);
  340. entry = 0x40000000;
  341. }
  342. if (kernel_size < 0) {
  343. error_report("Could not load kernel '%s'", kernel_filename);
  344. exit(1);
  345. }
  346. env->pc = entry;
  347. }
  348. static void mcf5208evb_machine_init(MachineClass *mc)
  349. {
  350. mc->desc = "MCF5208EVB";
  351. mc->init = mcf5208evb_init;
  352. mc->is_default = true;
  353. mc->default_cpu_type = M68K_CPU_TYPE_NAME("m5208");
  354. mc->default_ram_id = "mcf5208.ram";
  355. }
  356. DEFINE_MACHINE("mcf5208evb", mcf5208evb_machine_init)