2
0

stellaris.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524
  1. /*
  2. * Luminary Micro Stellaris peripherals
  3. *
  4. * Copyright (c) 2006 CodeSourcery.
  5. * Written by Paul Brook
  6. *
  7. * This code is licensed under the GPL.
  8. */
  9. #include "qemu/osdep.h"
  10. #include "qemu/bitops.h"
  11. #include "qapi/error.h"
  12. #include "hw/core/split-irq.h"
  13. #include "hw/sysbus.h"
  14. #include "hw/sd/sd.h"
  15. #include "hw/ssi/ssi.h"
  16. #include "hw/arm/boot.h"
  17. #include "qemu/timer.h"
  18. #include "hw/i2c/i2c.h"
  19. #include "net/net.h"
  20. #include "hw/boards.h"
  21. #include "qemu/log.h"
  22. #include "exec/address-spaces.h"
  23. #include "system/system.h"
  24. #include "hw/arm/armv7m.h"
  25. #include "hw/char/pl011.h"
  26. #include "hw/input/stellaris_gamepad.h"
  27. #include "hw/irq.h"
  28. #include "hw/watchdog/cmsdk-apb-watchdog.h"
  29. #include "migration/vmstate.h"
  30. #include "hw/misc/unimp.h"
  31. #include "hw/timer/stellaris-gptm.h"
  32. #include "hw/qdev-clock.h"
  33. #include "qom/object.h"
  34. #include "qobject/qlist.h"
  35. #include "ui/input.h"
  36. #define GPIO_A 0
  37. #define GPIO_B 1
  38. #define GPIO_C 2
  39. #define GPIO_D 3
  40. #define GPIO_E 4
  41. #define GPIO_F 5
  42. #define GPIO_G 6
  43. #define BP_OLED_I2C 0x01
  44. #define BP_OLED_SSI 0x02
  45. #define BP_GAMEPAD 0x04
  46. #define NUM_IRQ_LINES 64
  47. #define NUM_PRIO_BITS 3
  48. #define NUM_GPIO 7
  49. #define NUM_UART 4
  50. #define NUM_GPTM 4
  51. #define NUM_I2C 2
  52. /*
  53. * See Stellaris Data Sheet chapter 5.2.5 "System Control",
  54. * Register 13 .. 17: Device Capabilities 0 .. 4 (DC0 .. DC4).
  55. */
  56. #define DC1_WDT 3
  57. #define DC1_HIB 6
  58. #define DC1_MPU 7
  59. #define DC1_ADC 16
  60. #define DC1_PWM 20
  61. #define DC2_UART(n) (n)
  62. #define DC2_SSI 4
  63. #define DC2_QEI(n) (8 + n)
  64. #define DC2_I2C(n) (12 + 2 * n)
  65. #define DC2_GPTM(n) (16 + n)
  66. #define DC2_COMP(n) (24 + n)
  67. #define DC4_GPIO(n) (n)
  68. #define DC4_EMAC 28
  69. #define DEV_CAP(_dc, _cap) extract32(board->dc##_dc, DC##_dc##_##_cap, 1)
  70. typedef const struct {
  71. const char *name;
  72. uint32_t did0;
  73. uint32_t did1;
  74. uint32_t dc0;
  75. uint32_t dc1;
  76. uint32_t dc2;
  77. uint32_t dc3;
  78. uint32_t dc4;
  79. uint32_t peripherals;
  80. } stellaris_board_info;
  81. /* System controller. */
  82. #define TYPE_STELLARIS_SYS "stellaris-sys"
  83. OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
  84. struct ssys_state {
  85. SysBusDevice parent_obj;
  86. MemoryRegion iomem;
  87. uint32_t pborctl;
  88. uint32_t ldopctl;
  89. uint32_t int_status;
  90. uint32_t int_mask;
  91. uint32_t resc;
  92. uint32_t rcc;
  93. uint32_t rcc2;
  94. uint32_t rcgc[3];
  95. uint32_t scgc[3];
  96. uint32_t dcgc[3];
  97. uint32_t clkvclr;
  98. uint32_t ldoarst;
  99. qemu_irq irq;
  100. Clock *sysclk;
  101. /* Properties (all read-only registers) */
  102. uint32_t user0;
  103. uint32_t user1;
  104. uint32_t did0;
  105. uint32_t did1;
  106. uint32_t dc0;
  107. uint32_t dc1;
  108. uint32_t dc2;
  109. uint32_t dc3;
  110. uint32_t dc4;
  111. };
  112. static void ssys_update(ssys_state *s)
  113. {
  114. qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
  115. }
  116. static const uint32_t pllcfg_sandstorm[16] = {
  117. 0x31c0, /* 1 Mhz */
  118. 0x1ae0, /* 1.8432 Mhz */
  119. 0x18c0, /* 2 Mhz */
  120. 0xd573, /* 2.4576 Mhz */
  121. 0x37a6, /* 3.57954 Mhz */
  122. 0x1ae2, /* 3.6864 Mhz */
  123. 0x0c40, /* 4 Mhz */
  124. 0x98bc, /* 4.906 Mhz */
  125. 0x935b, /* 4.9152 Mhz */
  126. 0x09c0, /* 5 Mhz */
  127. 0x4dee, /* 5.12 Mhz */
  128. 0x0c41, /* 6 Mhz */
  129. 0x75db, /* 6.144 Mhz */
  130. 0x1ae6, /* 7.3728 Mhz */
  131. 0x0600, /* 8 Mhz */
  132. 0x585b /* 8.192 Mhz */
  133. };
  134. static const uint32_t pllcfg_fury[16] = {
  135. 0x3200, /* 1 Mhz */
  136. 0x1b20, /* 1.8432 Mhz */
  137. 0x1900, /* 2 Mhz */
  138. 0xf42b, /* 2.4576 Mhz */
  139. 0x37e3, /* 3.57954 Mhz */
  140. 0x1b21, /* 3.6864 Mhz */
  141. 0x0c80, /* 4 Mhz */
  142. 0x98ee, /* 4.906 Mhz */
  143. 0xd5b4, /* 4.9152 Mhz */
  144. 0x0a00, /* 5 Mhz */
  145. 0x4e27, /* 5.12 Mhz */
  146. 0x1902, /* 6 Mhz */
  147. 0xec1c, /* 6.144 Mhz */
  148. 0x1b23, /* 7.3728 Mhz */
  149. 0x0640, /* 8 Mhz */
  150. 0xb11c /* 8.192 Mhz */
  151. };
  152. #define DID0_VER_MASK 0x70000000
  153. #define DID0_VER_0 0x00000000
  154. #define DID0_VER_1 0x10000000
  155. #define DID0_CLASS_MASK 0x00FF0000
  156. #define DID0_CLASS_SANDSTORM 0x00000000
  157. #define DID0_CLASS_FURY 0x00010000
  158. static int ssys_board_class(const ssys_state *s)
  159. {
  160. uint32_t did0 = s->did0;
  161. switch (did0 & DID0_VER_MASK) {
  162. case DID0_VER_0:
  163. return DID0_CLASS_SANDSTORM;
  164. case DID0_VER_1:
  165. switch (did0 & DID0_CLASS_MASK) {
  166. case DID0_CLASS_SANDSTORM:
  167. case DID0_CLASS_FURY:
  168. return did0 & DID0_CLASS_MASK;
  169. }
  170. /* for unknown classes, fall through */
  171. default:
  172. /* This can only happen if the hardwired constant did0 value
  173. * in this board's stellaris_board_info struct is wrong.
  174. */
  175. g_assert_not_reached();
  176. }
  177. }
  178. static uint64_t ssys_read(void *opaque, hwaddr offset,
  179. unsigned size)
  180. {
  181. ssys_state *s = (ssys_state *)opaque;
  182. switch (offset) {
  183. case 0x000: /* DID0 */
  184. return s->did0;
  185. case 0x004: /* DID1 */
  186. return s->did1;
  187. case 0x008: /* DC0 */
  188. return s->dc0;
  189. case 0x010: /* DC1 */
  190. return s->dc1;
  191. case 0x014: /* DC2 */
  192. return s->dc2;
  193. case 0x018: /* DC3 */
  194. return s->dc3;
  195. case 0x01c: /* DC4 */
  196. return s->dc4;
  197. case 0x030: /* PBORCTL */
  198. return s->pborctl;
  199. case 0x034: /* LDOPCTL */
  200. return s->ldopctl;
  201. case 0x040: /* SRCR0 */
  202. return 0;
  203. case 0x044: /* SRCR1 */
  204. return 0;
  205. case 0x048: /* SRCR2 */
  206. return 0;
  207. case 0x050: /* RIS */
  208. return s->int_status;
  209. case 0x054: /* IMC */
  210. return s->int_mask;
  211. case 0x058: /* MISC */
  212. return s->int_status & s->int_mask;
  213. case 0x05c: /* RESC */
  214. return s->resc;
  215. case 0x060: /* RCC */
  216. return s->rcc;
  217. case 0x064: /* PLLCFG */
  218. {
  219. int xtal;
  220. xtal = (s->rcc >> 6) & 0xf;
  221. switch (ssys_board_class(s)) {
  222. case DID0_CLASS_FURY:
  223. return pllcfg_fury[xtal];
  224. case DID0_CLASS_SANDSTORM:
  225. return pllcfg_sandstorm[xtal];
  226. default:
  227. g_assert_not_reached();
  228. }
  229. }
  230. case 0x070: /* RCC2 */
  231. return s->rcc2;
  232. case 0x100: /* RCGC0 */
  233. return s->rcgc[0];
  234. case 0x104: /* RCGC1 */
  235. return s->rcgc[1];
  236. case 0x108: /* RCGC2 */
  237. return s->rcgc[2];
  238. case 0x110: /* SCGC0 */
  239. return s->scgc[0];
  240. case 0x114: /* SCGC1 */
  241. return s->scgc[1];
  242. case 0x118: /* SCGC2 */
  243. return s->scgc[2];
  244. case 0x120: /* DCGC0 */
  245. return s->dcgc[0];
  246. case 0x124: /* DCGC1 */
  247. return s->dcgc[1];
  248. case 0x128: /* DCGC2 */
  249. return s->dcgc[2];
  250. case 0x150: /* CLKVCLR */
  251. return s->clkvclr;
  252. case 0x160: /* LDOARST */
  253. return s->ldoarst;
  254. case 0x1e0: /* USER0 */
  255. return s->user0;
  256. case 0x1e4: /* USER1 */
  257. return s->user1;
  258. default:
  259. qemu_log_mask(LOG_GUEST_ERROR,
  260. "SSYS: read at bad offset 0x%x\n", (int)offset);
  261. return 0;
  262. }
  263. }
  264. static bool ssys_use_rcc2(ssys_state *s)
  265. {
  266. return (s->rcc2 >> 31) & 0x1;
  267. }
  268. /*
  269. * Calculate the system clock period. We only want to propagate
  270. * this change to the rest of the system if we're not being called
  271. * from migration post-load.
  272. */
  273. static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
  274. {
  275. int period_ns;
  276. /*
  277. * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input
  278. * clock is 200MHz, which is a period of 5 ns. Dividing the clock
  279. * frequency by X is the same as multiplying the period by X.
  280. */
  281. if (ssys_use_rcc2(s)) {
  282. period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
  283. } else {
  284. period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
  285. }
  286. clock_set_ns(s->sysclk, period_ns);
  287. if (propagate_clock) {
  288. clock_propagate(s->sysclk);
  289. }
  290. }
  291. static void ssys_write(void *opaque, hwaddr offset,
  292. uint64_t value, unsigned size)
  293. {
  294. ssys_state *s = (ssys_state *)opaque;
  295. switch (offset) {
  296. case 0x030: /* PBORCTL */
  297. s->pborctl = value & 0xffff;
  298. break;
  299. case 0x034: /* LDOPCTL */
  300. s->ldopctl = value & 0x1f;
  301. break;
  302. case 0x040: /* SRCR0 */
  303. case 0x044: /* SRCR1 */
  304. case 0x048: /* SRCR2 */
  305. qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
  306. break;
  307. case 0x054: /* IMC */
  308. s->int_mask = value & 0x7f;
  309. break;
  310. case 0x058: /* MISC */
  311. s->int_status &= ~value;
  312. break;
  313. case 0x05c: /* RESC */
  314. s->resc = value & 0x3f;
  315. break;
  316. case 0x060: /* RCC */
  317. if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
  318. /* PLL enable. */
  319. s->int_status |= (1 << 6);
  320. }
  321. s->rcc = value;
  322. ssys_calculate_system_clock(s, true);
  323. break;
  324. case 0x070: /* RCC2 */
  325. if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
  326. break;
  327. }
  328. if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
  329. /* PLL enable. */
  330. s->int_status |= (1 << 6);
  331. }
  332. s->rcc2 = value;
  333. ssys_calculate_system_clock(s, true);
  334. break;
  335. case 0x100: /* RCGC0 */
  336. s->rcgc[0] = value;
  337. break;
  338. case 0x104: /* RCGC1 */
  339. s->rcgc[1] = value;
  340. break;
  341. case 0x108: /* RCGC2 */
  342. s->rcgc[2] = value;
  343. break;
  344. case 0x110: /* SCGC0 */
  345. s->scgc[0] = value;
  346. break;
  347. case 0x114: /* SCGC1 */
  348. s->scgc[1] = value;
  349. break;
  350. case 0x118: /* SCGC2 */
  351. s->scgc[2] = value;
  352. break;
  353. case 0x120: /* DCGC0 */
  354. s->dcgc[0] = value;
  355. break;
  356. case 0x124: /* DCGC1 */
  357. s->dcgc[1] = value;
  358. break;
  359. case 0x128: /* DCGC2 */
  360. s->dcgc[2] = value;
  361. break;
  362. case 0x150: /* CLKVCLR */
  363. s->clkvclr = value;
  364. break;
  365. case 0x160: /* LDOARST */
  366. s->ldoarst = value;
  367. break;
  368. default:
  369. qemu_log_mask(LOG_GUEST_ERROR,
  370. "SSYS: write at bad offset 0x%x\n", (int)offset);
  371. }
  372. ssys_update(s);
  373. }
  374. static const MemoryRegionOps ssys_ops = {
  375. .read = ssys_read,
  376. .write = ssys_write,
  377. .endianness = DEVICE_NATIVE_ENDIAN,
  378. };
  379. static void stellaris_sys_reset_enter(Object *obj, ResetType type)
  380. {
  381. ssys_state *s = STELLARIS_SYS(obj);
  382. s->pborctl = 0x7ffd;
  383. s->rcc = 0x078e3ac0;
  384. if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
  385. s->rcc2 = 0;
  386. } else {
  387. s->rcc2 = 0x07802810;
  388. }
  389. s->rcgc[0] = 1;
  390. s->scgc[0] = 1;
  391. s->dcgc[0] = 1;
  392. }
  393. static void stellaris_sys_reset_hold(Object *obj, ResetType type)
  394. {
  395. ssys_state *s = STELLARIS_SYS(obj);
  396. /* OK to propagate clocks from the hold phase */
  397. ssys_calculate_system_clock(s, true);
  398. }
  399. static void stellaris_sys_reset_exit(Object *obj, ResetType type)
  400. {
  401. }
  402. static int stellaris_sys_post_load(void *opaque, int version_id)
  403. {
  404. ssys_state *s = opaque;
  405. ssys_calculate_system_clock(s, false);
  406. return 0;
  407. }
  408. static const VMStateDescription vmstate_stellaris_sys = {
  409. .name = "stellaris_sys",
  410. .version_id = 2,
  411. .minimum_version_id = 1,
  412. .post_load = stellaris_sys_post_load,
  413. .fields = (const VMStateField[]) {
  414. VMSTATE_UINT32(pborctl, ssys_state),
  415. VMSTATE_UINT32(ldopctl, ssys_state),
  416. VMSTATE_UINT32(int_mask, ssys_state),
  417. VMSTATE_UINT32(int_status, ssys_state),
  418. VMSTATE_UINT32(resc, ssys_state),
  419. VMSTATE_UINT32(rcc, ssys_state),
  420. VMSTATE_UINT32_V(rcc2, ssys_state, 2),
  421. VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
  422. VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
  423. VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
  424. VMSTATE_UINT32(clkvclr, ssys_state),
  425. VMSTATE_UINT32(ldoarst, ssys_state),
  426. /* No field for sysclk -- handled in post-load instead */
  427. VMSTATE_END_OF_LIST()
  428. }
  429. };
  430. static const Property stellaris_sys_properties[] = {
  431. DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
  432. DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
  433. DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
  434. DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
  435. DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
  436. DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
  437. DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
  438. DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
  439. DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
  440. };
  441. static void stellaris_sys_instance_init(Object *obj)
  442. {
  443. ssys_state *s = STELLARIS_SYS(obj);
  444. SysBusDevice *sbd = SYS_BUS_DEVICE(s);
  445. memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
  446. sysbus_init_mmio(sbd, &s->iomem);
  447. sysbus_init_irq(sbd, &s->irq);
  448. s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
  449. }
  450. /*
  451. * I2C controller.
  452. * ??? For now we only implement the master interface.
  453. */
  454. #define TYPE_STELLARIS_I2C "stellaris-i2c"
  455. OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
  456. struct stellaris_i2c_state {
  457. SysBusDevice parent_obj;
  458. I2CBus *bus;
  459. qemu_irq irq;
  460. MemoryRegion iomem;
  461. uint32_t msa;
  462. uint32_t mcs;
  463. uint32_t mdr;
  464. uint32_t mtpr;
  465. uint32_t mimr;
  466. uint32_t mris;
  467. uint32_t mcr;
  468. };
  469. #define STELLARIS_I2C_MCS_BUSY 0x01
  470. #define STELLARIS_I2C_MCS_ERROR 0x02
  471. #define STELLARIS_I2C_MCS_ADRACK 0x04
  472. #define STELLARIS_I2C_MCS_DATACK 0x08
  473. #define STELLARIS_I2C_MCS_ARBLST 0x10
  474. #define STELLARIS_I2C_MCS_IDLE 0x20
  475. #define STELLARIS_I2C_MCS_BUSBSY 0x40
  476. static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
  477. unsigned size)
  478. {
  479. stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
  480. switch (offset) {
  481. case 0x00: /* MSA */
  482. return s->msa;
  483. case 0x04: /* MCS */
  484. /* We don't emulate timing, so the controller is never busy. */
  485. return s->mcs | STELLARIS_I2C_MCS_IDLE;
  486. case 0x08: /* MDR */
  487. return s->mdr;
  488. case 0x0c: /* MTPR */
  489. return s->mtpr;
  490. case 0x10: /* MIMR */
  491. return s->mimr;
  492. case 0x14: /* MRIS */
  493. return s->mris;
  494. case 0x18: /* MMIS */
  495. return s->mris & s->mimr;
  496. case 0x20: /* MCR */
  497. return s->mcr;
  498. default:
  499. qemu_log_mask(LOG_GUEST_ERROR,
  500. "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
  501. return 0;
  502. }
  503. }
  504. static void stellaris_i2c_update(stellaris_i2c_state *s)
  505. {
  506. int level;
  507. level = (s->mris & s->mimr) != 0;
  508. qemu_set_irq(s->irq, level);
  509. }
  510. static void stellaris_i2c_write(void *opaque, hwaddr offset,
  511. uint64_t value, unsigned size)
  512. {
  513. stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
  514. switch (offset) {
  515. case 0x00: /* MSA */
  516. s->msa = value & 0xff;
  517. break;
  518. case 0x04: /* MCS */
  519. if ((s->mcr & 0x10) == 0) {
  520. /* Disabled. Do nothing. */
  521. break;
  522. }
  523. /* Grab the bus if this is starting a transfer. */
  524. if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
  525. if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
  526. s->mcs |= STELLARIS_I2C_MCS_ARBLST;
  527. } else {
  528. s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
  529. s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
  530. }
  531. }
  532. /* If we don't have the bus then indicate an error. */
  533. if (!i2c_bus_busy(s->bus)
  534. || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
  535. s->mcs |= STELLARIS_I2C_MCS_ERROR;
  536. break;
  537. }
  538. s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
  539. if (value & 1) {
  540. /* Transfer a byte. */
  541. /* TODO: Handle errors. */
  542. if (s->msa & 1) {
  543. /* Recv */
  544. s->mdr = i2c_recv(s->bus);
  545. } else {
  546. /* Send */
  547. i2c_send(s->bus, s->mdr);
  548. }
  549. /* Raise an interrupt. */
  550. s->mris |= 1;
  551. }
  552. if (value & 4) {
  553. /* Finish transfer. */
  554. i2c_end_transfer(s->bus);
  555. s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
  556. }
  557. break;
  558. case 0x08: /* MDR */
  559. s->mdr = value & 0xff;
  560. break;
  561. case 0x0c: /* MTPR */
  562. s->mtpr = value & 0xff;
  563. break;
  564. case 0x10: /* MIMR */
  565. s->mimr = 1;
  566. break;
  567. case 0x1c: /* MICR */
  568. s->mris &= ~value;
  569. break;
  570. case 0x20: /* MCR */
  571. if (value & 1) {
  572. qemu_log_mask(LOG_UNIMP,
  573. "stellaris_i2c: Loopback not implemented\n");
  574. }
  575. if (value & 0x20) {
  576. qemu_log_mask(LOG_UNIMP,
  577. "stellaris_i2c: Slave mode not implemented\n");
  578. }
  579. s->mcr = value & 0x31;
  580. break;
  581. default:
  582. qemu_log_mask(LOG_GUEST_ERROR,
  583. "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
  584. }
  585. stellaris_i2c_update(s);
  586. }
  587. static void stellaris_i2c_reset_enter(Object *obj, ResetType type)
  588. {
  589. stellaris_i2c_state *s = STELLARIS_I2C(obj);
  590. if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
  591. i2c_end_transfer(s->bus);
  592. }
  593. static void stellaris_i2c_reset_hold(Object *obj, ResetType type)
  594. {
  595. stellaris_i2c_state *s = STELLARIS_I2C(obj);
  596. s->msa = 0;
  597. s->mcs = 0;
  598. s->mdr = 0;
  599. s->mtpr = 1;
  600. s->mimr = 0;
  601. s->mris = 0;
  602. s->mcr = 0;
  603. }
  604. static void stellaris_i2c_reset_exit(Object *obj, ResetType type)
  605. {
  606. stellaris_i2c_state *s = STELLARIS_I2C(obj);
  607. stellaris_i2c_update(s);
  608. }
  609. static const MemoryRegionOps stellaris_i2c_ops = {
  610. .read = stellaris_i2c_read,
  611. .write = stellaris_i2c_write,
  612. .endianness = DEVICE_NATIVE_ENDIAN,
  613. };
  614. static const VMStateDescription vmstate_stellaris_i2c = {
  615. .name = "stellaris_i2c",
  616. .version_id = 1,
  617. .minimum_version_id = 1,
  618. .fields = (const VMStateField[]) {
  619. VMSTATE_UINT32(msa, stellaris_i2c_state),
  620. VMSTATE_UINT32(mcs, stellaris_i2c_state),
  621. VMSTATE_UINT32(mdr, stellaris_i2c_state),
  622. VMSTATE_UINT32(mtpr, stellaris_i2c_state),
  623. VMSTATE_UINT32(mimr, stellaris_i2c_state),
  624. VMSTATE_UINT32(mris, stellaris_i2c_state),
  625. VMSTATE_UINT32(mcr, stellaris_i2c_state),
  626. VMSTATE_END_OF_LIST()
  627. }
  628. };
  629. static void stellaris_i2c_init(Object *obj)
  630. {
  631. DeviceState *dev = DEVICE(obj);
  632. stellaris_i2c_state *s = STELLARIS_I2C(obj);
  633. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  634. I2CBus *bus;
  635. sysbus_init_irq(sbd, &s->irq);
  636. bus = i2c_init_bus(dev, "i2c");
  637. s->bus = bus;
  638. memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
  639. "i2c", 0x1000);
  640. sysbus_init_mmio(sbd, &s->iomem);
  641. }
  642. /* Analogue to Digital Converter. This is only partially implemented,
  643. enough for applications that use a combined ADC and timer tick. */
  644. #define STELLARIS_ADC_EM_CONTROLLER 0
  645. #define STELLARIS_ADC_EM_COMP 1
  646. #define STELLARIS_ADC_EM_EXTERNAL 4
  647. #define STELLARIS_ADC_EM_TIMER 5
  648. #define STELLARIS_ADC_EM_PWM0 6
  649. #define STELLARIS_ADC_EM_PWM1 7
  650. #define STELLARIS_ADC_EM_PWM2 8
  651. #define STELLARIS_ADC_FIFO_EMPTY 0x0100
  652. #define STELLARIS_ADC_FIFO_FULL 0x1000
  653. #define TYPE_STELLARIS_ADC "stellaris-adc"
  654. typedef struct StellarisADCState StellarisADCState;
  655. DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
  656. struct StellarisADCState {
  657. SysBusDevice parent_obj;
  658. MemoryRegion iomem;
  659. uint32_t actss;
  660. uint32_t ris;
  661. uint32_t im;
  662. uint32_t emux;
  663. uint32_t ostat;
  664. uint32_t ustat;
  665. uint32_t sspri;
  666. uint32_t sac;
  667. struct {
  668. uint32_t state;
  669. uint32_t data[16];
  670. } fifo[4];
  671. uint32_t ssmux[4];
  672. uint32_t ssctl[4];
  673. uint32_t noise;
  674. qemu_irq irq[4];
  675. };
  676. static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
  677. {
  678. int tail;
  679. tail = s->fifo[n].state & 0xf;
  680. if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
  681. s->ustat |= 1 << n;
  682. } else {
  683. s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
  684. s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
  685. if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
  686. s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
  687. }
  688. return s->fifo[n].data[tail];
  689. }
  690. static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
  691. uint32_t value)
  692. {
  693. int head;
  694. /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
  695. FIFO fir each sequencer. */
  696. head = (s->fifo[n].state >> 4) & 0xf;
  697. if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
  698. s->ostat |= 1 << n;
  699. return;
  700. }
  701. s->fifo[n].data[head] = value;
  702. head = (head + 1) & 0xf;
  703. s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
  704. s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
  705. if ((s->fifo[n].state & 0xf) == head)
  706. s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
  707. }
  708. static void stellaris_adc_update(StellarisADCState *s)
  709. {
  710. int level;
  711. int n;
  712. for (n = 0; n < 4; n++) {
  713. level = (s->ris & s->im & (1 << n)) != 0;
  714. qemu_set_irq(s->irq[n], level);
  715. }
  716. }
  717. static void stellaris_adc_trigger(void *opaque, int irq, int level)
  718. {
  719. StellarisADCState *s = opaque;
  720. int n;
  721. for (n = 0; n < 4; n++) {
  722. if ((s->actss & (1 << n)) == 0) {
  723. continue;
  724. }
  725. if (((s->emux >> (n * 4)) & 0xff) != 5) {
  726. continue;
  727. }
  728. /* Some applications use the ADC as a random number source, so introduce
  729. some variation into the signal. */
  730. s->noise = s->noise * 314159 + 1;
  731. /* ??? actual inputs not implemented. Return an arbitrary value. */
  732. stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
  733. s->ris |= (1 << n);
  734. stellaris_adc_update(s);
  735. }
  736. }
  737. static void stellaris_adc_reset_hold(Object *obj, ResetType type)
  738. {
  739. StellarisADCState *s = STELLARIS_ADC(obj);
  740. int n;
  741. for (n = 0; n < 4; n++) {
  742. s->ssmux[n] = 0;
  743. s->ssctl[n] = 0;
  744. s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
  745. }
  746. }
  747. static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
  748. unsigned size)
  749. {
  750. StellarisADCState *s = opaque;
  751. /* TODO: Implement this. */
  752. if (offset >= 0x40 && offset < 0xc0) {
  753. int n;
  754. n = (offset - 0x40) >> 5;
  755. switch (offset & 0x1f) {
  756. case 0x00: /* SSMUX */
  757. return s->ssmux[n];
  758. case 0x04: /* SSCTL */
  759. return s->ssctl[n];
  760. case 0x08: /* SSFIFO */
  761. return stellaris_adc_fifo_read(s, n);
  762. case 0x0c: /* SSFSTAT */
  763. return s->fifo[n].state;
  764. default:
  765. break;
  766. }
  767. }
  768. switch (offset) {
  769. case 0x00: /* ACTSS */
  770. return s->actss;
  771. case 0x04: /* RIS */
  772. return s->ris;
  773. case 0x08: /* IM */
  774. return s->im;
  775. case 0x0c: /* ISC */
  776. return s->ris & s->im;
  777. case 0x10: /* OSTAT */
  778. return s->ostat;
  779. case 0x14: /* EMUX */
  780. return s->emux;
  781. case 0x18: /* USTAT */
  782. return s->ustat;
  783. case 0x20: /* SSPRI */
  784. return s->sspri;
  785. case 0x30: /* SAC */
  786. return s->sac;
  787. default:
  788. qemu_log_mask(LOG_GUEST_ERROR,
  789. "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
  790. return 0;
  791. }
  792. }
  793. static void stellaris_adc_write(void *opaque, hwaddr offset,
  794. uint64_t value, unsigned size)
  795. {
  796. StellarisADCState *s = opaque;
  797. /* TODO: Implement this. */
  798. if (offset >= 0x40 && offset < 0xc0) {
  799. int n;
  800. n = (offset - 0x40) >> 5;
  801. switch (offset & 0x1f) {
  802. case 0x00: /* SSMUX */
  803. s->ssmux[n] = value & 0x33333333;
  804. return;
  805. case 0x04: /* SSCTL */
  806. if (value != 6) {
  807. qemu_log_mask(LOG_UNIMP,
  808. "ADC: Unimplemented sequence %" PRIx64 "\n",
  809. value);
  810. }
  811. s->ssctl[n] = value;
  812. return;
  813. default:
  814. break;
  815. }
  816. }
  817. switch (offset) {
  818. case 0x00: /* ACTSS */
  819. s->actss = value & 0xf;
  820. break;
  821. case 0x08: /* IM */
  822. s->im = value;
  823. break;
  824. case 0x0c: /* ISC */
  825. s->ris &= ~value;
  826. break;
  827. case 0x10: /* OSTAT */
  828. s->ostat &= ~value;
  829. break;
  830. case 0x14: /* EMUX */
  831. s->emux = value;
  832. break;
  833. case 0x18: /* USTAT */
  834. s->ustat &= ~value;
  835. break;
  836. case 0x20: /* SSPRI */
  837. s->sspri = value;
  838. break;
  839. case 0x28: /* PSSI */
  840. qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
  841. break;
  842. case 0x30: /* SAC */
  843. s->sac = value;
  844. break;
  845. default:
  846. qemu_log_mask(LOG_GUEST_ERROR,
  847. "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
  848. }
  849. stellaris_adc_update(s);
  850. }
  851. static const MemoryRegionOps stellaris_adc_ops = {
  852. .read = stellaris_adc_read,
  853. .write = stellaris_adc_write,
  854. .endianness = DEVICE_NATIVE_ENDIAN,
  855. };
  856. static const VMStateDescription vmstate_stellaris_adc = {
  857. .name = "stellaris_adc",
  858. .version_id = 1,
  859. .minimum_version_id = 1,
  860. .fields = (const VMStateField[]) {
  861. VMSTATE_UINT32(actss, StellarisADCState),
  862. VMSTATE_UINT32(ris, StellarisADCState),
  863. VMSTATE_UINT32(im, StellarisADCState),
  864. VMSTATE_UINT32(emux, StellarisADCState),
  865. VMSTATE_UINT32(ostat, StellarisADCState),
  866. VMSTATE_UINT32(ustat, StellarisADCState),
  867. VMSTATE_UINT32(sspri, StellarisADCState),
  868. VMSTATE_UINT32(sac, StellarisADCState),
  869. VMSTATE_UINT32(fifo[0].state, StellarisADCState),
  870. VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
  871. VMSTATE_UINT32(ssmux[0], StellarisADCState),
  872. VMSTATE_UINT32(ssctl[0], StellarisADCState),
  873. VMSTATE_UINT32(fifo[1].state, StellarisADCState),
  874. VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
  875. VMSTATE_UINT32(ssmux[1], StellarisADCState),
  876. VMSTATE_UINT32(ssctl[1], StellarisADCState),
  877. VMSTATE_UINT32(fifo[2].state, StellarisADCState),
  878. VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
  879. VMSTATE_UINT32(ssmux[2], StellarisADCState),
  880. VMSTATE_UINT32(ssctl[2], StellarisADCState),
  881. VMSTATE_UINT32(fifo[3].state, StellarisADCState),
  882. VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
  883. VMSTATE_UINT32(ssmux[3], StellarisADCState),
  884. VMSTATE_UINT32(ssctl[3], StellarisADCState),
  885. VMSTATE_UINT32(noise, StellarisADCState),
  886. VMSTATE_END_OF_LIST()
  887. }
  888. };
  889. static void stellaris_adc_init(Object *obj)
  890. {
  891. DeviceState *dev = DEVICE(obj);
  892. StellarisADCState *s = STELLARIS_ADC(obj);
  893. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  894. int n;
  895. for (n = 0; n < 4; n++) {
  896. sysbus_init_irq(sbd, &s->irq[n]);
  897. }
  898. memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
  899. "adc", 0x1000);
  900. sysbus_init_mmio(sbd, &s->iomem);
  901. qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
  902. }
  903. /* Board init. */
  904. static const stellaris_board_info stellaris_boards[] = {
  905. { "LM3S811EVB",
  906. 0,
  907. 0x0032000e,
  908. 0x001f001f, /* dc0 */
  909. 0x001132bf,
  910. 0x01071013,
  911. 0x3f0f01ff,
  912. 0x0000001f,
  913. BP_OLED_I2C
  914. },
  915. { "LM3S6965EVB",
  916. 0x10010002,
  917. 0x1073402e,
  918. 0x00ff007f, /* dc0 */
  919. 0x001133ff,
  920. 0x030f5317,
  921. 0x0f0f87ff,
  922. 0x5000007f,
  923. BP_OLED_SSI | BP_GAMEPAD
  924. }
  925. };
  926. static void stellaris_init(MachineState *ms, stellaris_board_info *board)
  927. {
  928. static const int uart_irq[NUM_UART] = {5, 6, 33, 34};
  929. static const int timer_irq[NUM_GPTM] = {19, 21, 23, 35};
  930. static const uint32_t gpio_addr[NUM_GPIO] =
  931. { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
  932. 0x40024000, 0x40025000, 0x40026000};
  933. static const int gpio_irq[NUM_GPIO] = {0, 1, 2, 3, 4, 30, 31};
  934. static const uint32_t i2c_addr[NUM_I2C] = {0x40020000, 0x40021000};
  935. static const int i2c_irq[NUM_I2C] = {8, 37};
  936. /* Memory map of SoC devices, from
  937. * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
  938. * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
  939. *
  940. * 40000000 wdtimer
  941. * 40004000 GPIO
  942. * 40005000 GPIO
  943. * 40006000 GPIO
  944. * 40007000 GPIO
  945. * 40008000 SSI
  946. * 4000c000 UART
  947. * 4000d000 UART
  948. * 4000e000 UART
  949. * 40020000 i2c
  950. * 40021000 i2c (unimplemented)
  951. * 40024000 GPIO
  952. * 40025000 GPIO
  953. * 40026000 GPIO
  954. * 40028000 PWM (unimplemented)
  955. * 4002c000 QEI (unimplemented)
  956. * 4002d000 QEI (unimplemented)
  957. * 40030000 gptimer
  958. * 40031000 gptimer
  959. * 40032000 gptimer
  960. * 40033000 gptimer
  961. * 40038000 ADC
  962. * 4003c000 analogue comparator (unimplemented)
  963. * 40048000 ethernet
  964. * 400fc000 hibernation module (unimplemented)
  965. * 400fd000 flash memory control (unimplemented)
  966. * 400fe000 system control
  967. */
  968. Object *soc_container;
  969. DeviceState *gpio_dev[NUM_GPIO], *armv7m, *nvic;
  970. qemu_irq gpio_in[NUM_GPIO][8];
  971. qemu_irq gpio_out[NUM_GPIO][8];
  972. qemu_irq adc;
  973. int sram_size;
  974. int flash_size;
  975. DeviceState *i2c_dev[NUM_I2C] = { };
  976. DeviceState *dev;
  977. DeviceState *ssys_dev;
  978. int i;
  979. int j;
  980. NICInfo *nd;
  981. MACAddr mac;
  982. MemoryRegion *sram = g_new(MemoryRegion, 1);
  983. MemoryRegion *flash = g_new(MemoryRegion, 1);
  984. MemoryRegion *system_memory = get_system_memory();
  985. flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
  986. sram_size = ((board->dc0 >> 18) + 1) * 1024;
  987. soc_container = object_new(TYPE_CONTAINER);
  988. object_property_add_child(OBJECT(ms), "soc", soc_container);
  989. /* Flash programming is done via the SCU, so pretend it is ROM. */
  990. memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
  991. &error_fatal);
  992. memory_region_add_subregion(system_memory, 0, flash);
  993. memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
  994. &error_fatal);
  995. memory_region_add_subregion(system_memory, 0x20000000, sram);
  996. /*
  997. * Create the system-registers object early, because we will
  998. * need its sysclk output.
  999. */
  1000. ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
  1001. object_property_add_child(soc_container, "sys", OBJECT(ssys_dev));
  1002. /*
  1003. * Most devices come preprogrammed with a MAC address in the user data.
  1004. * Generate a MAC address now, if there isn't a matching -nic for it.
  1005. */
  1006. nd = qemu_find_nic_info("stellaris_enet", true, "stellaris");
  1007. if (nd) {
  1008. memcpy(mac.a, nd->macaddr.a, sizeof(mac.a));
  1009. } else {
  1010. qemu_macaddr_default_if_unset(&mac);
  1011. }
  1012. qdev_prop_set_uint32(ssys_dev, "user0",
  1013. mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16));
  1014. qdev_prop_set_uint32(ssys_dev, "user1",
  1015. mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16));
  1016. qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
  1017. qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
  1018. qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
  1019. qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
  1020. qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
  1021. qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
  1022. qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
  1023. sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
  1024. armv7m = qdev_new(TYPE_ARMV7M);
  1025. object_property_add_child(soc_container, "v7m", OBJECT(armv7m));
  1026. qdev_prop_set_uint32(armv7m, "num-irq", NUM_IRQ_LINES);
  1027. qdev_prop_set_uint8(armv7m, "num-prio-bits", NUM_PRIO_BITS);
  1028. qdev_prop_set_string(armv7m, "cpu-type", ms->cpu_type);
  1029. qdev_prop_set_bit(armv7m, "enable-bitband", true);
  1030. qdev_connect_clock_in(armv7m, "cpuclk",
  1031. qdev_get_clock_out(ssys_dev, "SYSCLK"));
  1032. /* This SoC does not connect the systick reference clock */
  1033. object_property_set_link(OBJECT(armv7m), "memory",
  1034. OBJECT(get_system_memory()), &error_abort);
  1035. /* This will exit with an error if the user passed us a bad cpu_type */
  1036. sysbus_realize_and_unref(SYS_BUS_DEVICE(armv7m), &error_fatal);
  1037. nvic = armv7m;
  1038. /* Now we can wire up the IRQ and MMIO of the system registers */
  1039. sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
  1040. sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
  1041. if (DEV_CAP(1, ADC)) {
  1042. dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
  1043. qdev_get_gpio_in(nvic, 14),
  1044. qdev_get_gpio_in(nvic, 15),
  1045. qdev_get_gpio_in(nvic, 16),
  1046. qdev_get_gpio_in(nvic, 17),
  1047. NULL);
  1048. adc = qdev_get_gpio_in(dev, 0);
  1049. } else {
  1050. adc = NULL;
  1051. }
  1052. for (i = 0; i < NUM_GPTM; i++) {
  1053. if (DEV_CAP(2, GPTM(i))) {
  1054. SysBusDevice *sbd;
  1055. dev = qdev_new(TYPE_STELLARIS_GPTM);
  1056. sbd = SYS_BUS_DEVICE(dev);
  1057. object_property_add_child(soc_container, "gptm[*]", OBJECT(dev));
  1058. qdev_connect_clock_in(dev, "clk",
  1059. qdev_get_clock_out(ssys_dev, "SYSCLK"));
  1060. sysbus_realize_and_unref(sbd, &error_fatal);
  1061. sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
  1062. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
  1063. /* TODO: This is incorrect, but we get away with it because
  1064. the ADC output is only ever pulsed. */
  1065. qdev_connect_gpio_out(dev, 0, adc);
  1066. }
  1067. }
  1068. if (DEV_CAP(1, WDT)) {
  1069. dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
  1070. object_property_add_child(soc_container, "wdg", OBJECT(dev));
  1071. qdev_connect_clock_in(dev, "WDOGCLK",
  1072. qdev_get_clock_out(ssys_dev, "SYSCLK"));
  1073. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  1074. sysbus_mmio_map(SYS_BUS_DEVICE(dev),
  1075. 0,
  1076. 0x40000000u);
  1077. sysbus_connect_irq(SYS_BUS_DEVICE(dev),
  1078. 0,
  1079. qdev_get_gpio_in(nvic, 18));
  1080. }
  1081. for (i = 0; i < NUM_GPIO; i++) {
  1082. if (DEV_CAP(4, GPIO(i))) {
  1083. gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
  1084. qdev_get_gpio_in(nvic,
  1085. gpio_irq[i]));
  1086. for (j = 0; j < 8; j++) {
  1087. gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
  1088. gpio_out[i][j] = NULL;
  1089. }
  1090. }
  1091. }
  1092. for (i = 0; i < NUM_I2C; i++) {
  1093. if (DEV_CAP(2, I2C(i))) {
  1094. i2c_dev[i] = sysbus_create_simple(TYPE_STELLARIS_I2C, i2c_addr[i],
  1095. qdev_get_gpio_in(nvic,
  1096. i2c_irq[i]));
  1097. }
  1098. }
  1099. if (board->peripherals & BP_OLED_I2C) {
  1100. I2CBus *bus = (I2CBus *)qdev_get_child_bus(i2c_dev[0], "i2c");
  1101. i2c_slave_create_simple(bus, "ssd0303", 0x3d);
  1102. }
  1103. for (i = 0; i < NUM_UART; i++) {
  1104. if (DEV_CAP(2, UART(i))) {
  1105. SysBusDevice *sbd;
  1106. dev = qdev_new("pl011_luminary");
  1107. object_property_add_child(soc_container, "uart[*]", OBJECT(dev));
  1108. sbd = SYS_BUS_DEVICE(dev);
  1109. qdev_prop_set_chr(dev, "chardev", serial_hd(i));
  1110. sysbus_realize_and_unref(sbd, &error_fatal);
  1111. sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
  1112. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
  1113. }
  1114. }
  1115. if (DEV_CAP(2, SSI)) {
  1116. dev = sysbus_create_simple("pl022", 0x40008000,
  1117. qdev_get_gpio_in(nvic, 7));
  1118. if (board->peripherals & BP_OLED_SSI) {
  1119. void *bus;
  1120. DeviceState *sddev;
  1121. DeviceState *ssddev;
  1122. DriveInfo *dinfo;
  1123. DeviceState *carddev;
  1124. DeviceState *gpio_d_splitter;
  1125. BlockBackend *blk;
  1126. /*
  1127. * Some boards have both an OLED controller and SD card connected to
  1128. * the same SSI port, with the SD card chip select connected to a
  1129. * GPIO pin. Technically the OLED chip select is connected to the
  1130. * SSI Fss pin. We do not bother emulating that as both devices
  1131. * should never be selected simultaneously, and our OLED controller
  1132. * ignores stray 0xff commands that occur when deselecting the SD
  1133. * card.
  1134. *
  1135. * The h/w wiring is:
  1136. * - GPIO pin D0 is wired to the active-low SD card chip select
  1137. * - GPIO pin A3 is wired to the active-low OLED chip select
  1138. * - The SoC wiring of the PL061 "auxiliary function" for A3 is
  1139. * SSI0Fss ("frame signal"), which is an output from the SoC's
  1140. * SSI controller. The SSI controller takes SSI0Fss low when it
  1141. * transmits a frame, so it can work as a chip-select signal.
  1142. * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
  1143. * (the OLED never sends data to the CPU, so no wiring needed)
  1144. * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
  1145. * and the OLED display-data-in
  1146. * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
  1147. * serial-clock input
  1148. * So a guest that wants to use the OLED can configure the PL061
  1149. * to make pins A2, A3, A5 aux-function, so they are connected
  1150. * directly to the SSI controller. When the SSI controller sends
  1151. * data it asserts SSI0Fss which selects the OLED.
  1152. * A guest that wants to use the SD card configures A2, A4 and A5
  1153. * as aux-function, but leaves A3 as a software-controlled GPIO
  1154. * line. It asserts the SD card chip-select by using the PL061
  1155. * to control pin D0, and lets the SSI controller handle Clk, Tx
  1156. * and Rx. (The SSI controller asserts Fss during tx cycles as
  1157. * usual, but because A3 is not set to aux-function this is not
  1158. * forwarded to the OLED, and so the OLED stays unselected.)
  1159. *
  1160. * The QEMU implementation instead is:
  1161. * - GPIO pin D0 is wired to the active-low SD card chip select,
  1162. * and also to the OLED chip-select which is implemented
  1163. * as *active-high*
  1164. * - SSI controller signals go to the devices regardless of
  1165. * whether the guest programs A2, A4, A5 as aux-function or not
  1166. *
  1167. * The problem with this implementation is if the guest doesn't
  1168. * care about the SD card and only uses the OLED. In that case it
  1169. * may choose never to do anything with D0 (leaving it in its
  1170. * default floating state, which reliably leaves the card disabled
  1171. * because an SD card has a pullup on CS within the card itself),
  1172. * and only set up A2, A3, A5. This for us would mean the OLED
  1173. * never gets the chip-select assert it needs. We work around
  1174. * this with a manual raise of D0 here (despite board creation
  1175. * code being the wrong place to raise IRQ lines) to put the OLED
  1176. * into an initially selected state.
  1177. *
  1178. * In theory the right way to model this would be:
  1179. * - Implement aux-function support in the PL061, with an
  1180. * extra set of AFIN and AFOUT GPIO lines (set up so that
  1181. * if a GPIO line is in auxfn mode the main GPIO in and out
  1182. * track the AFIN and AFOUT lines)
  1183. * - Wire the AFOUT for D0 up to either a line from the
  1184. * SSI controller that's pulled low around every transmit,
  1185. * or at least to an always-0 line here on the board
  1186. * - Make the ssd0323 OLED controller chipselect active-low
  1187. */
  1188. bus = qdev_get_child_bus(dev, "ssi");
  1189. sddev = ssi_create_peripheral(bus, "ssi-sd");
  1190. dinfo = drive_get(IF_SD, 0, 0);
  1191. blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
  1192. carddev = qdev_new(TYPE_SD_CARD_SPI);
  1193. qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
  1194. qdev_realize_and_unref(carddev,
  1195. qdev_get_child_bus(sddev, "sd-bus"),
  1196. &error_fatal);
  1197. ssddev = qdev_new("ssd0323");
  1198. object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev));
  1199. qdev_prop_set_uint8(ssddev, "cs", 1);
  1200. qdev_realize_and_unref(ssddev, bus, &error_fatal);
  1201. gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
  1202. object_property_add_child(OBJECT(ms), "splitter",
  1203. OBJECT(gpio_d_splitter));
  1204. qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
  1205. qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
  1206. qdev_connect_gpio_out(
  1207. gpio_d_splitter, 0,
  1208. qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
  1209. qdev_connect_gpio_out(
  1210. gpio_d_splitter, 1,
  1211. qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
  1212. gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
  1213. gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
  1214. /* Make sure the select pin is high. */
  1215. qemu_irq_raise(gpio_out[GPIO_D][0]);
  1216. }
  1217. }
  1218. if (DEV_CAP(4, EMAC)) {
  1219. DeviceState *enet;
  1220. enet = qdev_new("stellaris_enet");
  1221. object_property_add_child(soc_container, "enet", OBJECT(enet));
  1222. if (nd) {
  1223. qdev_set_nic_properties(enet, nd);
  1224. } else {
  1225. qdev_prop_set_macaddr(enet, "mac", mac.a);
  1226. }
  1227. sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
  1228. sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
  1229. sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
  1230. }
  1231. if (board->peripherals & BP_GAMEPAD) {
  1232. QList *gpad_keycode_list = qlist_new();
  1233. static const int gpad_keycode[5] = {
  1234. Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
  1235. Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
  1236. };
  1237. DeviceState *gpad;
  1238. gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
  1239. object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad));
  1240. for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
  1241. qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
  1242. }
  1243. qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
  1244. sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
  1245. qdev_connect_gpio_out(gpad, 0,
  1246. qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
  1247. qdev_connect_gpio_out(gpad, 1,
  1248. qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
  1249. qdev_connect_gpio_out(gpad, 2,
  1250. qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
  1251. qdev_connect_gpio_out(gpad, 3,
  1252. qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
  1253. qdev_connect_gpio_out(gpad, 4,
  1254. qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
  1255. }
  1256. for (i = 0; i < 7; i++) {
  1257. if (board->dc4 & (1 << i)) {
  1258. for (j = 0; j < 8; j++) {
  1259. if (gpio_out[i][j]) {
  1260. qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
  1261. }
  1262. }
  1263. }
  1264. }
  1265. /* Add dummy regions for the devices we don't implement yet,
  1266. * so guest accesses don't cause unlogged crashes.
  1267. */
  1268. create_unimplemented_device("PWM", 0x40028000, 0x1000);
  1269. create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
  1270. create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
  1271. create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
  1272. create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
  1273. create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
  1274. armv7m_load_kernel(ARMV7M(armv7m)->cpu, ms->kernel_filename, 0, flash_size);
  1275. }
  1276. /* FIXME: Figure out how to generate these from stellaris_boards. */
  1277. static void lm3s811evb_init(MachineState *machine)
  1278. {
  1279. stellaris_init(machine, &stellaris_boards[0]);
  1280. }
  1281. static void lm3s6965evb_init(MachineState *machine)
  1282. {
  1283. stellaris_init(machine, &stellaris_boards[1]);
  1284. }
  1285. /*
  1286. * Stellaris LM3S811 Evaluation Board Schematics:
  1287. * https://www.ti.com/lit/ug/symlink/spmu030.pdf
  1288. */
  1289. static void lm3s811evb_class_init(ObjectClass *oc, void *data)
  1290. {
  1291. MachineClass *mc = MACHINE_CLASS(oc);
  1292. mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
  1293. mc->init = lm3s811evb_init;
  1294. mc->ignore_memory_transaction_failures = true;
  1295. mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
  1296. }
  1297. static const TypeInfo lm3s811evb_type = {
  1298. .name = MACHINE_TYPE_NAME("lm3s811evb"),
  1299. .parent = TYPE_MACHINE,
  1300. .class_init = lm3s811evb_class_init,
  1301. };
  1302. /*
  1303. * Stellaris: LM3S6965 Evaluation Board Schematics:
  1304. * https://www.ti.com/lit/ug/symlink/spmu029.pdf
  1305. */
  1306. static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
  1307. {
  1308. MachineClass *mc = MACHINE_CLASS(oc);
  1309. mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
  1310. mc->init = lm3s6965evb_init;
  1311. mc->ignore_memory_transaction_failures = true;
  1312. mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
  1313. mc->auto_create_sdcard = true;
  1314. }
  1315. static const TypeInfo lm3s6965evb_type = {
  1316. .name = MACHINE_TYPE_NAME("lm3s6965evb"),
  1317. .parent = TYPE_MACHINE,
  1318. .class_init = lm3s6965evb_class_init,
  1319. };
  1320. static void stellaris_machine_init(void)
  1321. {
  1322. type_register_static(&lm3s811evb_type);
  1323. type_register_static(&lm3s6965evb_type);
  1324. }
  1325. type_init(stellaris_machine_init)
  1326. static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
  1327. {
  1328. DeviceClass *dc = DEVICE_CLASS(klass);
  1329. ResettableClass *rc = RESETTABLE_CLASS(klass);
  1330. rc->phases.enter = stellaris_i2c_reset_enter;
  1331. rc->phases.hold = stellaris_i2c_reset_hold;
  1332. rc->phases.exit = stellaris_i2c_reset_exit;
  1333. dc->vmsd = &vmstate_stellaris_i2c;
  1334. }
  1335. static const TypeInfo stellaris_i2c_info = {
  1336. .name = TYPE_STELLARIS_I2C,
  1337. .parent = TYPE_SYS_BUS_DEVICE,
  1338. .instance_size = sizeof(stellaris_i2c_state),
  1339. .instance_init = stellaris_i2c_init,
  1340. .class_init = stellaris_i2c_class_init,
  1341. };
  1342. static void stellaris_adc_class_init(ObjectClass *klass, void *data)
  1343. {
  1344. DeviceClass *dc = DEVICE_CLASS(klass);
  1345. ResettableClass *rc = RESETTABLE_CLASS(klass);
  1346. rc->phases.hold = stellaris_adc_reset_hold;
  1347. dc->vmsd = &vmstate_stellaris_adc;
  1348. }
  1349. static const TypeInfo stellaris_adc_info = {
  1350. .name = TYPE_STELLARIS_ADC,
  1351. .parent = TYPE_SYS_BUS_DEVICE,
  1352. .instance_size = sizeof(StellarisADCState),
  1353. .instance_init = stellaris_adc_init,
  1354. .class_init = stellaris_adc_class_init,
  1355. };
  1356. static void stellaris_sys_class_init(ObjectClass *klass, void *data)
  1357. {
  1358. DeviceClass *dc = DEVICE_CLASS(klass);
  1359. ResettableClass *rc = RESETTABLE_CLASS(klass);
  1360. dc->vmsd = &vmstate_stellaris_sys;
  1361. rc->phases.enter = stellaris_sys_reset_enter;
  1362. rc->phases.hold = stellaris_sys_reset_hold;
  1363. rc->phases.exit = stellaris_sys_reset_exit;
  1364. device_class_set_props(dc, stellaris_sys_properties);
  1365. }
  1366. static const TypeInfo stellaris_sys_info = {
  1367. .name = TYPE_STELLARIS_SYS,
  1368. .parent = TYPE_SYS_BUS_DEVICE,
  1369. .instance_size = sizeof(ssys_state),
  1370. .instance_init = stellaris_sys_instance_init,
  1371. .class_init = stellaris_sys_class_init,
  1372. };
  1373. static void stellaris_register_types(void)
  1374. {
  1375. type_register_static(&stellaris_i2c_info);
  1376. type_register_static(&stellaris_adc_info);
  1377. type_register_static(&stellaris_sys_info);
  1378. }
  1379. type_init(stellaris_register_types)