123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720 |
- /*
- * QTest testcase for the MC146818 real-time clock
- *
- * Copyright IBM, Corp. 2012
- *
- * Authors:
- * Anthony Liguori <aliguori@us.ibm.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
- #include "qemu/osdep.h"
- #include "libqtest-single.h"
- #include "qemu/timer.h"
- #include "hw/rtc/mc146818rtc.h"
- #include "hw/rtc/mc146818rtc_regs.h"
- #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
- static uint8_t base = 0x70;
- static int bcd2dec(int value)
- {
- return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
- }
- static uint8_t cmos_read(uint8_t reg)
- {
- outb(base + 0, reg);
- return inb(base + 1);
- }
- static void cmos_write(uint8_t reg, uint8_t val)
- {
- outb(base + 0, reg);
- outb(base + 1, val);
- }
- static int tm_cmp(struct tm *lhs, struct tm *rhs)
- {
- time_t a, b;
- struct tm d1, d2;
- memcpy(&d1, lhs, sizeof(d1));
- memcpy(&d2, rhs, sizeof(d2));
- a = mktime(&d1);
- b = mktime(&d2);
- if (a < b) {
- return -1;
- } else if (a > b) {
- return 1;
- }
- return 0;
- }
- #if 0
- static void print_tm(struct tm *tm)
- {
- printf("%04d-%02d-%02d %02d:%02d:%02d\n",
- tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
- tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
- }
- #endif
- static void cmos_get_date_time(struct tm *date)
- {
- int base_year = 2000, hour_offset;
- int sec, min, hour, mday, mon, year;
- time_t ts;
- struct tm dummy;
- sec = cmos_read(RTC_SECONDS);
- min = cmos_read(RTC_MINUTES);
- hour = cmos_read(RTC_HOURS);
- mday = cmos_read(RTC_DAY_OF_MONTH);
- mon = cmos_read(RTC_MONTH);
- year = cmos_read(RTC_YEAR);
- if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
- sec = bcd2dec(sec);
- min = bcd2dec(min);
- hour = bcd2dec(hour);
- mday = bcd2dec(mday);
- mon = bcd2dec(mon);
- year = bcd2dec(year);
- hour_offset = 80;
- } else {
- hour_offset = 0x80;
- }
- if ((cmos_read(0x0B) & REG_B_24H) == 0) {
- if (hour >= hour_offset) {
- hour -= hour_offset;
- hour += 12;
- }
- }
- ts = time(NULL);
- localtime_r(&ts, &dummy);
- date->tm_isdst = dummy.tm_isdst;
- date->tm_sec = sec;
- date->tm_min = min;
- date->tm_hour = hour;
- date->tm_mday = mday;
- date->tm_mon = mon - 1;
- date->tm_year = base_year + year - 1900;
- #ifndef __sun__
- date->tm_gmtoff = 0;
- #endif
- ts = mktime(date);
- }
- static void check_time(int wiggle)
- {
- struct tm start, date[4], end;
- struct tm *datep;
- time_t ts;
- /*
- * This check assumes a few things. First, we cannot guarantee that we get
- * a consistent reading from the wall clock because we may hit an edge of
- * the clock while reading. To work around this, we read four clock readings
- * such that at least two of them should match. We need to assume that one
- * reading is corrupt so we need four readings to ensure that we have at
- * least two consecutive identical readings
- *
- * It's also possible that we'll cross an edge reading the host clock so
- * simply check to make sure that the clock reading is within the period of
- * when we expect it to be.
- */
- ts = time(NULL);
- gmtime_r(&ts, &start);
- cmos_get_date_time(&date[0]);
- cmos_get_date_time(&date[1]);
- cmos_get_date_time(&date[2]);
- cmos_get_date_time(&date[3]);
- ts = time(NULL);
- gmtime_r(&ts, &end);
- if (tm_cmp(&date[0], &date[1]) == 0) {
- datep = &date[0];
- } else if (tm_cmp(&date[1], &date[2]) == 0) {
- datep = &date[1];
- } else if (tm_cmp(&date[2], &date[3]) == 0) {
- datep = &date[2];
- } else {
- g_assert_not_reached();
- }
- if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
- long t, s;
- start.tm_isdst = datep->tm_isdst;
- t = (long)mktime(datep);
- s = (long)mktime(&start);
- if (t < s) {
- g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
- } else {
- g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
- }
- g_assert_cmpint(ABS(t - s), <=, wiggle);
- }
- }
- static int wiggle = 2;
- static void set_year_20xx(void)
- {
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x11);
- cmos_write(RTC_CENTURY, 0x20);
- cmos_write(RTC_MONTH, 0x02);
- cmos_write(RTC_DAY_OF_MONTH, 0x02);
- cmos_write(RTC_HOURS, 0x02);
- cmos_write(RTC_MINUTES, 0x04);
- cmos_write(RTC_SECONDS, 0x58);
- cmos_write(RTC_REG_A, 0x26);
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
- if (sizeof(time_t) == 4) {
- return;
- }
- /* Set a date in 2080 to ensure there is no year-2038 overflow. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x80);
- cmos_write(RTC_REG_A, 0x26);
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x11);
- cmos_write(RTC_REG_A, 0x26);
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
- }
- static void set_year_1980(void)
- {
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x80);
- cmos_write(RTC_CENTURY, 0x19);
- cmos_write(RTC_MONTH, 0x02);
- cmos_write(RTC_DAY_OF_MONTH, 0x02);
- cmos_write(RTC_HOURS, 0x02);
- cmos_write(RTC_MINUTES, 0x04);
- cmos_write(RTC_SECONDS, 0x58);
- cmos_write(RTC_REG_A, 0x26);
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
- }
- static void bcd_check_time(void)
- {
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- check_time(wiggle);
- }
- static void dec_check_time(void)
- {
- /* Set DEC mode */
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
- check_time(wiggle);
- }
- static void alarm_time(void)
- {
- struct tm now;
- time_t ts;
- int i;
- ts = time(NULL);
- gmtime_r(&ts, &now);
- /* set DEC mode */
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
- g_assert(!get_irq(RTC_ISA_IRQ));
- cmos_read(RTC_REG_C);
- now.tm_sec = (now.tm_sec + 2) % 60;
- cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
- cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
- cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
- for (i = 0; i < 2 + wiggle; i++) {
- if (get_irq(RTC_ISA_IRQ)) {
- break;
- }
- clock_step(1000000000);
- }
- g_assert(get_irq(RTC_ISA_IRQ));
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
- g_assert(cmos_read(RTC_REG_C) == 0);
- }
- static void set_time_regs(int h, int m, int s)
- {
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, m);
- cmos_write(RTC_SECONDS, s);
- }
- static void set_time(int mode, int h, int m, int s)
- {
- cmos_write(RTC_REG_B, mode);
- cmos_write(RTC_REG_A, 0x76);
- set_time_regs(h, m, s);
- cmos_write(RTC_REG_A, 0x26);
- }
- static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
- {
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, min);
- cmos_write(RTC_SECONDS, s);
- cmos_write(RTC_YEAR, y & 0xFF);
- cmos_write(RTC_CENTURY, y >> 8);
- cmos_write(RTC_MONTH, m);
- cmos_write(RTC_DAY_OF_MONTH, d);
- }
- static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
- {
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, min);
- cmos_write(RTC_SECONDS, s);
- cmos_write(RTC_YEAR, y % 100);
- cmos_write(RTC_CENTURY, y / 100);
- cmos_write(RTC_MONTH, m);
- cmos_write(RTC_DAY_OF_MONTH, d);
- }
- static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
- {
- cmos_write(RTC_REG_B, mode);
- cmos_write(RTC_REG_A, 0x76);
- if (mode & REG_B_DM) {
- set_datetime_dec(h, min, s, d, m, y);
- } else {
- set_datetime_bcd(h, min, s, d, m, y);
- }
- cmos_write(RTC_REG_A, 0x26);
- }
- #define assert_time(h, m, s) \
- do { \
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
- g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
- } while(0)
- #define assert_datetime_bcd(h, min, s, d, m, y) \
- do { \
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
- g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
- } while(0)
- static void basic_12h_bcd(void)
- {
- /* set BCD 12 hour mode */
- set_time(0, 0x81, 0x59, 0x00);
- clock_step(1000000000LL);
- assert_time(0x81, 0x59, 0x01);
- clock_step(59000000000LL);
- assert_time(0x82, 0x00, 0x00);
- /* test BCD wraparound */
- set_time(0, 0x09, 0x59, 0x59);
- clock_step(60000000000LL);
- assert_time(0x10, 0x00, 0x59);
- /* 12 AM -> 1 AM */
- set_time(0, 0x12, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x01, 0x00, 0x00);
- /* 12 PM -> 1 PM */
- set_time(0, 0x92, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x81, 0x00, 0x00);
- /* 11 AM -> 12 PM */
- set_time(0, 0x11, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x92, 0x00, 0x00);
- /* TODO: test day wraparound */
- /* 11 PM -> 12 AM */
- set_time(0, 0x91, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x12, 0x00, 0x00);
- /* TODO: test day wraparound */
- }
- static void basic_12h_dec(void)
- {
- /* set decimal 12 hour mode */
- set_time(REG_B_DM, 0x81, 59, 0);
- clock_step(1000000000LL);
- assert_time(0x81, 59, 1);
- clock_step(59000000000LL);
- assert_time(0x82, 0, 0);
- /* 12 PM -> 1 PM */
- set_time(REG_B_DM, 0x8c, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x81, 0, 0);
- /* 12 AM -> 1 AM */
- set_time(REG_B_DM, 0x0c, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x01, 0, 0);
- /* 11 AM -> 12 PM */
- set_time(REG_B_DM, 0x0b, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x8c, 0, 0);
- /* 11 PM -> 12 AM */
- set_time(REG_B_DM, 0x8b, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x0c, 0, 0);
- /* TODO: test day wraparound */
- }
- static void basic_24h_bcd(void)
- {
- /* set BCD 24 hour mode */
- set_time(REG_B_24H, 0x09, 0x59, 0x00);
- clock_step(1000000000LL);
- assert_time(0x09, 0x59, 0x01);
- clock_step(59000000000LL);
- assert_time(0x10, 0x00, 0x00);
- /* test BCD wraparound */
- set_time(REG_B_24H, 0x09, 0x59, 0x00);
- clock_step(60000000000LL);
- assert_time(0x10, 0x00, 0x00);
- /* TODO: test day wraparound */
- set_time(REG_B_24H, 0x23, 0x59, 0x00);
- clock_step(60000000000LL);
- assert_time(0x00, 0x00, 0x00);
- }
- static void basic_24h_dec(void)
- {
- /* set decimal 24 hour mode */
- set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
- clock_step(1000000000LL);
- assert_time(9, 59, 1);
- clock_step(59000000000LL);
- assert_time(10, 0, 0);
- /* test BCD wraparound */
- set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
- clock_step(60000000000LL);
- assert_time(10, 0, 0);
- /* TODO: test day wraparound */
- set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
- clock_step(60000000000LL);
- assert_time(0, 0, 0);
- }
- static void am_pm_alarm(void)
- {
- cmos_write(RTC_MINUTES_ALARM, 0xC0);
- cmos_write(RTC_SECONDS_ALARM, 0xC0);
- /* set BCD 12 hour mode */
- cmos_write(RTC_REG_B, 0);
- /* Set time and alarm hour. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 0x82);
- cmos_write(RTC_HOURS, 0x81);
- cmos_write(RTC_MINUTES, 0x59);
- cmos_write(RTC_SECONDS, 0x00);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
- /* Check that alarm triggers when AM/PM is set. */
- clock_step(60000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
- /*
- * Each of the following two tests takes over 60 seconds due to the time
- * needed to report the PIT interrupts. Unfortunately, our PIT device
- * model keeps counting even when GATE=0, so we cannot simply disable
- * it in main().
- */
- if (g_test_quick()) {
- return;
- }
- /* set DEC 12 hour mode */
- cmos_write(RTC_REG_B, REG_B_DM);
- /* Set time and alarm hour. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 0x82);
- cmos_write(RTC_HOURS, 3);
- cmos_write(RTC_MINUTES, 0);
- cmos_write(RTC_SECONDS, 0);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
- /* Check that alarm triggers. */
- clock_step(3600 * 11 * 1000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
- /* Same as above, with inverted HOURS and HOURS_ALARM. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 2);
- cmos_write(RTC_HOURS, 3);
- cmos_write(RTC_MINUTES, 0);
- cmos_write(RTC_SECONDS, 0);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
- /* Check that alarm does not trigger if hours differ only by AM/PM. */
- clock_step(3600 * 11 * 1000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
- }
- /* success if no crash or abort */
- static void fuzz_registers(void)
- {
- unsigned int i;
- for (i = 0; i < 1000; i++) {
- uint8_t reg, val;
- reg = (uint8_t)g_test_rand_int_range(0, 16);
- val = (uint8_t)g_test_rand_int_range(0, 256);
- cmos_write(reg, val);
- cmos_read(reg);
- }
- }
- static void register_b_set_flag(void)
- {
- if (cmos_read(RTC_REG_A) & REG_A_UIP) {
- clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
- }
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
- set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* Since SET flag is still enabled, time does not advance. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* Disable SET flag in Register B */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* Since SET flag is disabled, the clock now advances. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
- }
- static void divider_reset(void)
- {
- /* Enable binary-coded decimal (BCD) mode in Register B*/
- cmos_write(RTC_REG_B, REG_B_24H);
- /* Enter divider reset */
- cmos_write(RTC_REG_A, 0x76);
- set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* Since divider reset flag is still enabled, these are equality checks. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* The first update ends 500 ms after divider reset */
- cmos_write(RTC_REG_A, 0x26);
- clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- clock_step(1);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
- clock_step(UIP_HOLD_LENGTH);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
- }
- static void uip_stuck(void)
- {
- set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
- /* The first update ends 500 ms after divider reset */
- (void)cmos_read(RTC_REG_C);
- clock_step(500000000LL);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
- /* UF is now set. */
- cmos_write(RTC_HOURS_ALARM, 0x02);
- cmos_write(RTC_MINUTES_ALARM, 0xC0);
- cmos_write(RTC_SECONDS_ALARM, 0xC0);
- /* Because the alarm will fire soon, reading register A will latch UIP. */
- clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
- /* Move the alarm far away. This must not cause UIP to remain stuck! */
- cmos_write(RTC_HOURS_ALARM, 0x03);
- clock_step(UIP_HOLD_LENGTH);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- }
- #define RTC_PERIOD_CODE1 13 /* 8 Hz */
- #define RTC_PERIOD_CODE2 15 /* 2 Hz */
- #define RTC_PERIOD_TEST_NR 50
- static uint64_t wait_periodic_interrupt(uint64_t real_time)
- {
- while (!get_irq(RTC_ISA_IRQ)) {
- real_time = clock_step_next();
- }
- g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
- return real_time;
- }
- static void periodic_timer(void)
- {
- int i;
- uint64_t period_clocks, period_time, start_time, real_time;
- /* disable all interrupts. */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
- ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
- /* enable periodic interrupt after properly configure the period. */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
- start_time = real_time = clock_step_next();
- for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
- real_time = wait_periodic_interrupt(real_time);
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
- real_time = wait_periodic_interrupt(real_time);
- }
- period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
- periodic_period_to_clock(RTC_PERIOD_CODE2);
- period_clocks *= RTC_PERIOD_TEST_NR;
- period_time = periodic_clock_to_ns(period_clocks);
- real_time -= start_time;
- g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
- NANOSECONDS_PER_SECOND * 0.5);
- }
- int main(int argc, char **argv)
- {
- QTestState *s = NULL;
- int ret;
- g_test_init(&argc, &argv, NULL);
- s = qtest_start("-rtc clock=vm");
- qtest_irq_intercept_in(s, "ioapic");
- qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
- qtest_add_func("/rtc/check-time/dec", dec_check_time);
- qtest_add_func("/rtc/alarm/interrupt", alarm_time);
- qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
- qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
- qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
- qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
- qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
- qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
- qtest_add_func("/rtc/set-year/1980", set_year_1980);
- qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
- qtest_add_func("/rtc/update/divider-reset", divider_reset);
- qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
- qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
- qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
- ret = g_test_run();
- if (s) {
- qtest_quit(s);
- }
- return ret;
- }
|