model_config.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. import torch.cuda
  2. import torch.backends
  3. import os
  4. embedding_model_dict = {
  5. "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
  6. "ernie-base": "nghuyong/ernie-3.0-base-zh",
  7. "text2vec": "GanymedeNil/text2vec-large-chinese",
  8. }
  9. # Embedding model name
  10. EMBEDDING_MODEL = "text2vec"
  11. # Embedding running device
  12. EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
  13. # supported LLM models
  14. llm_model_dict = {
  15. "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
  16. "chatglm-6b-int4": "THUDM/chatglm-6b-int4",
  17. "chatglm-6b": "THUDM/chatglm-6b",
  18. "chatyuan": "ClueAI/ChatYuan-large-v2",
  19. }
  20. # LLM model name
  21. LLM_MODEL = "chatglm-6b"
  22. # Use p-tuning-v2 PrefixEncoder
  23. USE_PTUNING_V2 = False
  24. # LLM running device
  25. LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
  26. VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vector_store", "")
  27. UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "content", "")
  28. # 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
  29. PROMPT_TEMPLATE = """基于以下已知信息,简洁和专业的来回答用户的问题,问题是"{question}"。如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。已知内容如下:
  30. {context} """