local_doc_qa.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. from langchain.chains import RetrievalQA
  2. from langchain.prompts import PromptTemplate
  3. from langchain.embeddings.huggingface import HuggingFaceEmbeddings
  4. from langchain.vectorstores import FAISS
  5. from langchain.document_loaders import UnstructuredFileLoader
  6. from models.chatglm_llm import ChatGLM
  7. import sentence_transformers
  8. import os
  9. from configs.model_config import *
  10. import datetime
  11. from typing import List
  12. from textsplitter import ChineseTextSplitter
  13. from langchain.docstore.document import Document
  14. # return top-k text chunk from vector store
  15. VECTOR_SEARCH_TOP_K = 6
  16. # LLM input history length
  17. LLM_HISTORY_LEN = 3
  18. def load_file(filepath):
  19. if filepath.lower().endswith(".md"):
  20. loader = UnstructuredFileLoader(filepath, mode="elements")
  21. docs = loader.load()
  22. elif filepath.lower().endswith(".pdf"):
  23. loader = UnstructuredFileLoader(filepath)
  24. textsplitter = ChineseTextSplitter(pdf=True)
  25. docs = loader.load_and_split(textsplitter)
  26. else:
  27. loader = UnstructuredFileLoader(filepath, mode="elements")
  28. textsplitter = ChineseTextSplitter(pdf=False)
  29. docs = loader.load_and_split(text_splitter=textsplitter)
  30. return docs
  31. def generate_prompt(related_docs: List[str],
  32. query: str,
  33. prompt_template=PROMPT_TEMPLATE) -> str:
  34. context = "\n".join([doc.page_content for doc in related_docs])
  35. prompt = prompt_template.replace("{question}", query).replace("{context}", context)
  36. return prompt
  37. def get_docs_with_score(docs_with_score):
  38. docs=[]
  39. for doc, score in docs_with_score:
  40. doc.metadata["score"] = score
  41. docs.append(doc)
  42. return docs
  43. class LocalDocQA:
  44. llm: object = None
  45. embeddings: object = None
  46. top_k: int = VECTOR_SEARCH_TOP_K
  47. def init_cfg(self,
  48. embedding_model: str = EMBEDDING_MODEL,
  49. embedding_device=EMBEDDING_DEVICE,
  50. llm_history_len: int = LLM_HISTORY_LEN,
  51. llm_model: str = LLM_MODEL,
  52. llm_device=LLM_DEVICE,
  53. top_k=VECTOR_SEARCH_TOP_K,
  54. use_ptuning_v2: bool = USE_PTUNING_V2
  55. ):
  56. self.llm = ChatGLM()
  57. self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
  58. llm_device=llm_device,
  59. use_ptuning_v2=use_ptuning_v2)
  60. self.llm.history_len = llm_history_len
  61. self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model],
  62. model_kwargs={'device': embedding_device})
  63. self.top_k = top_k
  64. def init_knowledge_vector_store(self,
  65. filepath: str or List[str],
  66. vs_path: str or os.PathLike = None):
  67. loaded_files = []
  68. if isinstance(filepath, str):
  69. if not os.path.exists(filepath):
  70. print("路径不存在")
  71. return None
  72. elif os.path.isfile(filepath):
  73. file = os.path.split(filepath)[-1]
  74. try:
  75. docs = load_file(filepath)
  76. print(f"{file} 已成功加载")
  77. loaded_files.append(filepath)
  78. except Exception as e:
  79. print(e)
  80. print(f"{file} 未能成功加载")
  81. return None
  82. elif os.path.isdir(filepath):
  83. docs = []
  84. for file in os.listdir(filepath):
  85. fullfilepath = os.path.join(filepath, file)
  86. try:
  87. docs += load_file(fullfilepath)
  88. print(f"{file} 已成功加载")
  89. loaded_files.append(fullfilepath)
  90. except Exception as e:
  91. print(e)
  92. print(f"{file} 未能成功加载")
  93. else:
  94. docs = []
  95. for file in filepath:
  96. try:
  97. docs += load_file(file)
  98. print(f"{file} 已成功加载")
  99. loaded_files.append(file)
  100. except Exception as e:
  101. print(e)
  102. print(f"{file} 未能成功加载")
  103. if len(docs) > 0:
  104. if vs_path and os.path.isdir(vs_path):
  105. vector_store = FAISS.load_local(vs_path, self.embeddings)
  106. vector_store.add_documents(docs)
  107. else:
  108. if not vs_path:
  109. vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
  110. vector_store = FAISS.from_documents(docs, self.embeddings)
  111. vector_store.save_local(vs_path)
  112. return vs_path, loaded_files
  113. else:
  114. print("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
  115. return None, loaded_files
  116. def get_knowledge_based_answer(self,
  117. query,
  118. vs_path,
  119. chat_history=[],
  120. streaming=True):
  121. self.llm.streaming = streaming
  122. vector_store = FAISS.load_local(vs_path, self.embeddings)
  123. related_docs_with_score = vector_store.similarity_search_with_score(query,
  124. k=self.top_k)
  125. related_docs = get_docs_with_score(related_docs_with_score)
  126. prompt = generate_prompt(related_docs, query)
  127. if streaming:
  128. for result, history in self.llm._call(prompt=prompt,
  129. history=chat_history):
  130. history[-1][0] = query
  131. response = {"query": query,
  132. "result": result,
  133. "source_documents": related_docs}
  134. yield response, history
  135. else:
  136. result, history = self.llm._call(prompt=prompt,
  137. history=chat_history)
  138. history[-1][0] = query
  139. response = {"query": query,
  140. "result": result,
  141. "source_documents": related_docs}
  142. return response, history