model_config.py 1.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. import torch.cuda
  2. import torch.backends
  3. VECTOR_SEARCH_TOP_K = 6
  4. LLM_HISTORY_LEN = 3
  5. IS_LOCAL_STORAGE = 1
  6. UPLOAD_LOCAL_PATH = "./uploads/"
  7. embedding_model_dict = {
  8. "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
  9. "ernie-base": "nghuyong/ernie-3.0-base-zh",
  10. "text2vec": "GanymedeNil/text2vec-large-chinese",
  11. }
  12. # Embedding model name
  13. EMBEDDING_MODEL = "text2vec"
  14. # Embedding running device
  15. EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
  16. # supported LLM models
  17. llm_model_dict = {
  18. "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
  19. "chatglm-6b-int4": "THUDM/chatglm-6b-int4",
  20. "chatglm-6b": "THUDM/chatglm-6b",
  21. "chatyuan": "ClueAI/ChatYuan-large-v2",
  22. }
  23. # LLM model name
  24. LLM_MODEL = "chatglm-6b"
  25. # Use p-tuning-v2 PrefixEncoder
  26. USE_PTUNING_V2 = False
  27. # LLM running device
  28. LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
  29. VS_ROOT_PATH = "./vector_store/"
  30. UPLOAD_ROOT_PATH = "./content/"