cli_demo.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. from configs.model_config import *
  2. from chains.local_doc_qa import LocalDocQA
  3. import os
  4. import nltk
  5. from models.loader.args import parser
  6. import models.shared as shared
  7. from models.loader import LoaderCheckPoint
  8. from models.chatglm_llm import ChatGLM
  9. nltk.data.path = [os.path.join(os.path.dirname(__file__), "nltk_data")] + nltk.data.path
  10. # return top-k text chunk from vector store
  11. VECTOR_SEARCH_TOP_K = 6
  12. # LLM input history length
  13. LLM_HISTORY_LEN = 3
  14. # Show reply with source text from input document
  15. REPLY_WITH_SOURCE = True
  16. if __name__ == "__main__":
  17. args = None
  18. args = parser.parse_args()
  19. args_dict = vars(args)
  20. shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
  21. llm_model_ins = shared.loaderLLM()
  22. llm_model_ins.history_len = LLM_HISTORY_LEN
  23. local_doc_qa = LocalDocQA()
  24. local_doc_qa.init_cfg(llm_model=llm_model_ins,
  25. embedding_model=EMBEDDING_MODEL,
  26. embedding_device=EMBEDDING_DEVICE,
  27. top_k=VECTOR_SEARCH_TOP_K)
  28. vs_path = None
  29. while not vs_path:
  30. filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
  31. vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath)
  32. history = []
  33. while True:
  34. query = input("Input your question 请输入问题:")
  35. last_print_len = 0
  36. for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
  37. vs_path=vs_path,
  38. chat_history=history,
  39. streaming=STREAMING):
  40. if STREAMING:
  41. print(resp["result"][last_print_len:], end="", flush=True)
  42. last_print_len = len(resp["result"])
  43. else:
  44. print(resp["result"])
  45. if REPLY_WITH_SOURCE:
  46. source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
  47. # f"""相关度:{doc.metadata['score']}\n\n"""
  48. for inum, doc in
  49. enumerate(resp["source_documents"])]
  50. print("\n\n" + "\n\n".join(source_text))