local_doc_qa.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. from langchain.embeddings.huggingface import HuggingFaceEmbeddings
  2. from langchain.vectorstores import FAISS
  3. from langchain.document_loaders import UnstructuredFileLoader
  4. from langchain.llms.base import LLM
  5. from models.chatglm_llm import ChatGLM
  6. from configs.model_config import *
  7. import datetime
  8. from textsplitter import ChineseTextSplitter
  9. from typing import List, Tuple
  10. from langchain.docstore.document import Document
  11. import numpy as np
  12. from utils import torch_gc
  13. # return top-k text chunk from vector store
  14. VECTOR_SEARCH_TOP_K = 6
  15. DEVICE_ = EMBEDDING_DEVICE
  16. DEVICE_ID = "0" if torch.cuda.is_available() else None
  17. DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_
  18. def load_file(filepath):
  19. if filepath.lower().endswith(".md"):
  20. loader = UnstructuredFileLoader(filepath, mode="elements")
  21. docs = loader.load()
  22. elif filepath.lower().endswith(".pdf"):
  23. loader = UnstructuredFileLoader(filepath)
  24. textsplitter = ChineseTextSplitter(pdf=True)
  25. docs = loader.load_and_split(textsplitter)
  26. else:
  27. loader = UnstructuredFileLoader(filepath, mode="elements")
  28. textsplitter = ChineseTextSplitter(pdf=False)
  29. docs = loader.load_and_split(text_splitter=textsplitter)
  30. return docs
  31. def generate_prompt(related_docs: List[str],
  32. query: str,
  33. prompt_template=PROMPT_TEMPLATE) -> str:
  34. context = "\n".join([doc.page_content for doc in related_docs])
  35. prompt = prompt_template.replace("{question}", query).replace("{context}", context)
  36. return prompt
  37. def get_docs_with_score(docs_with_score):
  38. docs = []
  39. for doc, score in docs_with_score:
  40. doc.metadata["score"] = score
  41. docs.append(doc)
  42. return docs
  43. def seperate_list(ls: List[int]) -> List[List[int]]:
  44. lists = []
  45. ls1 = [ls[0]]
  46. for i in range(1, len(ls)):
  47. if ls[i - 1] + 1 == ls[i]:
  48. ls1.append(ls[i])
  49. else:
  50. lists.append(ls1)
  51. ls1 = [ls[i]]
  52. lists.append(ls1)
  53. return lists
  54. def similarity_search_with_score_by_vector(
  55. self,
  56. embedding: List[float],
  57. k: int = 4,
  58. ) -> List[Tuple[Document, float]]:
  59. scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
  60. docs = []
  61. id_set = set()
  62. for j, i in enumerate(indices[0]):
  63. if i == -1:
  64. # This happens when not enough docs are returned.
  65. continue
  66. _id = self.index_to_docstore_id[i]
  67. doc = self.docstore.search(_id)
  68. id_set.add(i)
  69. docs_len = len(doc.page_content)
  70. for k in range(1, max(i, len(docs) - i)):
  71. break_flag = False
  72. for l in [i + k, i - k]:
  73. if 0 <= l < len(self.index_to_docstore_id):
  74. _id0 = self.index_to_docstore_id[l]
  75. doc0 = self.docstore.search(_id0)
  76. if docs_len + len(doc0.page_content) > self.chunk_size:
  77. break_flag=True
  78. break
  79. elif doc0.metadata["source"] == doc.metadata["source"]:
  80. docs_len += len(doc0.page_content)
  81. id_set.add(l)
  82. if break_flag:
  83. break
  84. id_list = sorted(list(id_set))
  85. id_lists = seperate_list(id_list)
  86. for id_seq in id_lists:
  87. for id in id_seq:
  88. if id == id_seq[0]:
  89. _id = self.index_to_docstore_id[id]
  90. doc = self.docstore.search(_id)
  91. else:
  92. _id0 = self.index_to_docstore_id[id]
  93. doc0 = self.docstore.search(_id0)
  94. doc.page_content += doc0.page_content
  95. if not isinstance(doc, Document):
  96. raise ValueError(f"Could not find document for id {_id}, got {doc}")
  97. docs.append((doc, scores[0][j]))
  98. torch_gc(DEVICE)
  99. return docs
  100. class LocalDocQA:
  101. llm: object = None
  102. embeddings: object = None
  103. top_k: int = VECTOR_SEARCH_TOP_K
  104. chunk_size: int = CHUNK_SIZE
  105. def __init__(self):
  106. self.top_k = VECTOR_SEARCH_TOP_K
  107. def init_cfg(self,
  108. embedding_model: str = EMBEDDING_MODEL,
  109. embedding_device=EMBEDDING_DEVICE,
  110. llm_model: LLM = None,
  111. top_k=VECTOR_SEARCH_TOP_K
  112. ):
  113. self.llm = llm_model
  114. self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model],
  115. model_kwargs={'device': embedding_device})
  116. self.top_k = top_k
  117. def init_knowledge_vector_store(self,
  118. filepath: str or List[str],
  119. vs_path: str or os.PathLike = None):
  120. loaded_files = []
  121. if isinstance(filepath, str):
  122. if not os.path.exists(filepath):
  123. print("路径不存在")
  124. return None
  125. elif os.path.isfile(filepath):
  126. file = os.path.split(filepath)[-1]
  127. try:
  128. docs = load_file(filepath)
  129. print(f"{file} 已成功加载")
  130. loaded_files.append(filepath)
  131. except Exception as e:
  132. print(e)
  133. print(f"{file} 未能成功加载")
  134. return None
  135. elif os.path.isdir(filepath):
  136. docs = []
  137. for file in os.listdir(filepath):
  138. fullfilepath = os.path.join(filepath, file)
  139. try:
  140. docs += load_file(fullfilepath)
  141. print(f"{file} 已成功加载")
  142. loaded_files.append(fullfilepath)
  143. except Exception as e:
  144. print(e)
  145. print(f"{file} 未能成功加载")
  146. else:
  147. docs = []
  148. for file in filepath:
  149. try:
  150. docs += load_file(file)
  151. print(f"{file} 已成功加载")
  152. loaded_files.append(file)
  153. except Exception as e:
  154. print(e)
  155. print(f"{file} 未能成功加载")
  156. if len(docs) > 0:
  157. if vs_path and os.path.isdir(vs_path):
  158. vector_store = FAISS.load_local(vs_path, self.embeddings)
  159. vector_store.add_documents(docs)
  160. torch_gc(DEVICE)
  161. else:
  162. if not vs_path:
  163. vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
  164. vector_store = FAISS.from_documents(docs, self.embeddings)
  165. torch_gc(DEVICE)
  166. vector_store.save_local(vs_path)
  167. return vs_path, loaded_files
  168. else:
  169. print("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
  170. return None, loaded_files
  171. def get_knowledge_based_answer(self,
  172. query,
  173. vs_path,
  174. chat_history=[],
  175. streaming: bool = STREAMING):
  176. vector_store = FAISS.load_local(vs_path, self.embeddings)
  177. FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
  178. vector_store.chunk_size = self.chunk_size
  179. related_docs_with_score = vector_store.similarity_search_with_score(query,
  180. k=self.top_k)
  181. related_docs = get_docs_with_score(related_docs_with_score)
  182. prompt = generate_prompt(related_docs, query)
  183. # if streaming:
  184. # for result, history in self.llm._stream_call(prompt=prompt,
  185. # history=chat_history):
  186. # history[-1][0] = query
  187. # response = {"query": query,
  188. # "result": result,
  189. # "source_documents": related_docs}
  190. # yield response, history
  191. # else:
  192. for result, history in self.llm._call(prompt=prompt,
  193. history=chat_history,
  194. streaming=streaming):
  195. history[-1][0] = query
  196. response = {"query": query,
  197. "result": result,
  198. "source_documents": related_docs}
  199. yield response, history
  200. if __name__ == "__main__":
  201. local_doc_qa = LocalDocQA()
  202. local_doc_qa.init_cfg()
  203. query = "本项目使用的embedding模型是什么,消耗多少显存"
  204. vs_path = "/Users/liuqian/Downloads/glm-dev/vector_store/aaa"
  205. last_print_len = 0
  206. for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
  207. vs_path=vs_path,
  208. chat_history=[],
  209. streaming=True):
  210. print(resp["result"][last_print_len:], end="", flush=True)
  211. last_print_len = len(resp["result"])
  212. source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
  213. # f"""相关度:{doc.metadata['score']}\n\n"""
  214. for inum, doc in
  215. enumerate(resp["source_documents"])]
  216. print("\n\n" + "\n\n".join(source_text))
  217. # for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
  218. # vs_path=vs_path,
  219. # chat_history=[],
  220. # streaming=False):
  221. # print(resp["result"])
  222. pass