123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- import json
- from langchain.llms.base import LLM
- from typing import List, Dict, Optional
- from transformers import AutoTokenizer, AutoModel, AutoConfig
- import torch
- from configs.model_config import *
- from utils import torch_gc
- DEVICE_ = LLM_DEVICE
- DEVICE_ID = "0" if torch.cuda.is_available() else None
- DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_
- def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
- # transformer.word_embeddings 占用1层
- # transformer.final_layernorm 和 lm_head 占用1层
- # transformer.layers 占用 28 层
- # 总共30层分配到num_gpus张卡上
- num_trans_layers = 28
- per_gpu_layers = 30 / num_gpus
- # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
- # windows下 model.device 会被设置成 transformer.word_embeddings.device
- # linux下 model.device 会被设置成 lm_head.device
- # 在调用chat或者stream_chat时,input_ids会被放到model.device上
- # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
- # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
- device_map = {'transformer.word_embeddings': 0,
- 'transformer.final_layernorm': 0, 'lm_head': 0}
- used = 2
- gpu_target = 0
- for i in range(num_trans_layers):
- if used >= per_gpu_layers:
- gpu_target += 1
- used = 0
- assert gpu_target < num_gpus
- device_map[f'transformer.layers.{i}'] = gpu_target
- used += 1
- return device_map
- class ChatGLM(LLM):
- max_token: int = 10000
- temperature: float = 0.8
- top_p = 0.9
- # history = []
- tokenizer: object = None
- model: object = None
- history_len: int = 10
- def __init__(self):
- super().__init__()
- @property
- def _llm_type(self) -> str:
- return "ChatGLM"
- def _call(self,
- prompt: str,
- history: List[List[str]] = [],
- streaming: bool = STREAMING): # -> Tuple[str, List[List[str]]]:
- if streaming:
- for inum, (stream_resp, _) in enumerate(self.model.stream_chat(
- self.tokenizer,
- prompt,
- history=history[-self.history_len:-1] if self.history_len > 0 else [],
- max_length=self.max_token,
- temperature=self.temperature,
- top_p=self.top_p,
- )):
- torch_gc()
- if inum == 0:
- history += [[prompt, stream_resp]]
- else:
- history[-1] = [prompt, stream_resp]
- yield stream_resp, history
- torch_gc()
- else:
- response, _ = self.model.chat(
- self.tokenizer,
- prompt,
- history=history[-self.history_len:] if self.history_len > 0 else [],
- max_length=self.max_token,
- temperature=self.temperature,
- top_p=self.top_p,
- )
- torch_gc()
- history += [[prompt, response]]
- yield response, history
- torch_gc()
- # def chat(self,
- # prompt: str) -> str:
- # response, _ = self.model.chat(
- # self.tokenizer,
- # prompt,
- # history=self.history[-self.history_len:] if self.history_len > 0 else [],
- # max_length=self.max_token,
- # temperature=self.temperature,
- # )
- # torch_gc()
- # self.history = self.history + [[None, response]]
- # return response
- def load_model(self,
- model_name_or_path: str = "THUDM/chatglm-6b",
- llm_device=LLM_DEVICE,
- use_ptuning_v2=False,
- use_lora=False,
- device_map: Optional[Dict[str, int]] = None,
- **kwargs):
- self.tokenizer = AutoTokenizer.from_pretrained(
- model_name_or_path,
- trust_remote_code=True
- )
- model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
- if use_ptuning_v2:
- try:
- prefix_encoder_file = open('ptuning-v2/config.json', 'r')
- prefix_encoder_config = json.loads(prefix_encoder_file.read())
- prefix_encoder_file.close()
- model_config.pre_seq_len = prefix_encoder_config['pre_seq_len']
- model_config.prefix_projection = prefix_encoder_config['prefix_projection']
- except Exception as e:
- print(e)
- print("加载PrefixEncoder config.json失败")
- self.model = AutoModel.from_pretrained(model_name_or_path, config=model_config, trust_remote_code=True,
- **kwargs)
- if LLM_LORA_PATH and use_lora:
- from peft import PeftModel
- self.model = PeftModel.from_pretrained(self.model, LLM_LORA_PATH)
- if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
- # 根据当前设备GPU数量决定是否进行多卡部署
- num_gpus = torch.cuda.device_count()
- if num_gpus < 2 and device_map is None:
- self.model = self.model.half().cuda()
- else:
- from accelerate import dispatch_model
- model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True,
- config=model_config, **kwargs)
- if LLM_LORA_PATH and use_lora:
- from peft import PeftModel
- model = PeftModel.from_pretrained(model, LLM_LORA_PATH)
- # 可传入device_map自定义每张卡的部署情况
- if device_map is None:
- device_map = auto_configure_device_map(num_gpus)
- self.model = dispatch_model(model.half(), device_map=device_map)
- else:
- self.model = self.model.float().to(llm_device)
- if use_ptuning_v2:
- try:
- prefix_state_dict = torch.load('ptuning-v2/pytorch_model.bin')
- new_prefix_state_dict = {}
- for k, v in prefix_state_dict.items():
- if k.startswith("transformer.prefix_encoder."):
- new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
- self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
- self.model.transformer.prefix_encoder.float()
- except Exception as e:
- print(e)
- print("加载PrefixEncoder模型参数失败")
- self.model = self.model.eval()
- if __name__ == "__main__":
- llm = ChatGLM()
- llm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL],
- llm_device=LLM_DEVICE, )
- last_print_len = 0
- for resp, history in llm._call("你好", streaming=True):
- print(resp[last_print_len:], end="", flush=True)
- last_print_len = len(resp)
- for resp, history in llm._call("你好", streaming=False):
- print(resp)
- pass
|