123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- from langchain.chains import RetrievalQA
- from langchain.prompts import PromptTemplate
- from langchain.embeddings.huggingface import HuggingFaceEmbeddings
- from langchain.vectorstores import FAISS
- from langchain.document_loaders import UnstructuredFileLoader
- from chatglm_llm import ChatGLM
- import sentence_transformers
- import torch
- import os
- import readline
- # Global Parameters
- EMBEDDING_MODEL = "text2vec"
- VECTOR_SEARCH_TOP_K = 6
- LLM_MODEL = "chatglm-6b"
- LLM_HISTORY_LEN = 3
- DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
- # Show reply with source text from input document
- REPLY_WITH_SOURCE = True
- embedding_model_dict = {
- "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
- "ernie-base": "nghuyong/ernie-3.0-base-zh",
- "text2vec": "GanymedeNil/text2vec-large-chinese",
- }
- llm_model_dict = {
- "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
- "chatglm-6b-int4": "THUDM/chatglm-6b-int4",
- "chatglm-6b": "THUDM/chatglm-6b",
- }
- def init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN, V_SEARCH_TOP_K=6):
- global chatglm, embeddings, VECTOR_SEARCH_TOP_K
- VECTOR_SEARCH_TOP_K = V_SEARCH_TOP_K
- chatglm = ChatGLM()
- chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
- chatglm.history_len = LLM_HISTORY_LEN
- embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],)
- embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name,
- device=DEVICE)
- def init_knowledge_vector_store(filepath:str):
- if not os.path.exists(filepath):
- print("路径不存在")
- return None
- elif os.path.isfile(filepath):
- file = os.path.split(filepath)[-1]
- try:
- loader = UnstructuredFileLoader(filepath, mode="elements")
- docs = loader.load()
- print(f"{file} 已成功加载")
- except:
- print(f"{file} 未能成功加载")
- return None
- elif os.path.isdir(filepath):
- docs = []
- for file in os.listdir(filepath):
- fullfilepath = os.path.join(filepath, file)
- try:
- loader = UnstructuredFileLoader(fullfilepath, mode="elements")
- docs += loader.load()
- print(f"{file} 已成功加载")
- except:
- print(f"{file} 未能成功加载")
- vector_store = FAISS.from_documents(docs, embeddings)
- return vector_store
- def get_knowledge_based_answer(query, vector_store, chat_history=[]):
- global chatglm, embeddings
- prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
- 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
- 已知内容:
- {context}
- 问题:
- {question}"""
- prompt = PromptTemplate(
- template=prompt_template,
- input_variables=["context", "question"]
- )
- chatglm.history = chat_history
- knowledge_chain = RetrievalQA.from_llm(
- llm=chatglm,
- retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
- prompt=prompt
- )
- knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
- input_variables=["page_content"], template="{page_content}"
- )
- knowledge_chain.return_source_documents = True
- result = knowledge_chain({"query": query})
- chatglm.history[-1][0] = query
- return result, chatglm.history
- if __name__ == "__main__":
- init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN)
- vector_store = None
- while not vector_store:
- filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
- vector_store = init_knowledge_vector_store(filepath)
- history = []
- while True:
- query = input("Input your question 请输入问题:")
- resp, history = get_knowledge_based_answer(query=query,
- vector_store=vector_store,
- chat_history=history)
- if REPLY_WITH_SOURCE:
- print(resp)
- else:
- print(resp["result"])
|