local_doc_qa.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. from langchain.chains import RetrievalQA
  2. from langchain.prompts import PromptTemplate
  3. # from langchain.embeddings.huggingface import HuggingFaceEmbeddings
  4. from chains.lib.embeddings import MyEmbeddings
  5. # from langchain.vectorstores import FAISS
  6. from chains.lib.vectorstores import FAISSVS
  7. from langchain.document_loaders import UnstructuredFileLoader
  8. from models.chatglm_llm import ChatGLM
  9. import sentence_transformers
  10. import os
  11. from configs.model_config import *
  12. import datetime
  13. from typing import List
  14. from textsplitter import ChineseTextSplitter
  15. # return top-k text chunk from vector store
  16. VECTOR_SEARCH_TOP_K = 6
  17. # LLM input history length
  18. LLM_HISTORY_LEN = 3
  19. def load_file(filepath):
  20. if filepath.lower().endswith(".pdf"):
  21. loader = UnstructuredFileLoader(filepath)
  22. textsplitter = ChineseTextSplitter(pdf=True)
  23. docs = loader.load_and_split(textsplitter)
  24. else:
  25. loader = UnstructuredFileLoader(filepath, mode="elements")
  26. textsplitter = ChineseTextSplitter(pdf=False)
  27. docs = loader.load_and_split(text_splitter=textsplitter)
  28. return docs
  29. class LocalDocQA:
  30. llm: object = None
  31. embeddings: object = None
  32. top_k: int = VECTOR_SEARCH_TOP_K
  33. def init_cfg(self,
  34. embedding_model: str = EMBEDDING_MODEL,
  35. embedding_device=EMBEDDING_DEVICE,
  36. llm_history_len: int = LLM_HISTORY_LEN,
  37. llm_model: str = LLM_MODEL,
  38. llm_device=LLM_DEVICE,
  39. top_k=VECTOR_SEARCH_TOP_K,
  40. use_ptuning_v2: bool = USE_PTUNING_V2
  41. ):
  42. self.llm = ChatGLM()
  43. self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
  44. llm_device=llm_device,
  45. use_ptuning_v2=use_ptuning_v2)
  46. self.llm.history_len = llm_history_len
  47. self.embeddings = MyEmbeddings(model_name=embedding_model_dict[embedding_model],
  48. model_kwargs={'device': embedding_device})
  49. # self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name,
  50. # device=embedding_device)
  51. self.top_k = top_k
  52. def init_knowledge_vector_store(self,
  53. filepath: str or List[str],
  54. vs_path: str or os.PathLike = None):
  55. loaded_files = []
  56. if isinstance(filepath, str):
  57. if not os.path.exists(filepath):
  58. print("路径不存在")
  59. return None
  60. elif os.path.isfile(filepath):
  61. file = os.path.split(filepath)[-1]
  62. try:
  63. docs = load_file(filepath)
  64. print(f"{file} 已成功加载")
  65. loaded_files.append(filepath)
  66. except Exception as e:
  67. print(e)
  68. print(f"{file} 未能成功加载")
  69. return None
  70. elif os.path.isdir(filepath):
  71. docs = []
  72. for file in os.listdir(filepath):
  73. fullfilepath = os.path.join(filepath, file)
  74. try:
  75. docs += load_file(fullfilepath)
  76. print(f"{file} 已成功加载")
  77. loaded_files.append(fullfilepath)
  78. except Exception as e:
  79. print(e)
  80. print(f"{file} 未能成功加载")
  81. else:
  82. docs = []
  83. for file in filepath:
  84. try:
  85. docs += load_file(file)
  86. print(f"{file} 已成功加载")
  87. loaded_files.append(file)
  88. except Exception as e:
  89. print(e)
  90. print(f"{file} 未能成功加载")
  91. if len(docs) > 0:
  92. if vs_path and os.path.isdir(vs_path):
  93. vector_store = FAISSVS.load_local(vs_path, self.embeddings)
  94. vector_store.add_documents(docs)
  95. else:
  96. if not vs_path:
  97. vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
  98. vector_store = FAISSVS.from_documents(docs, self.embeddings)
  99. vector_store.save_local(vs_path)
  100. return vs_path, loaded_files
  101. else:
  102. print("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
  103. return None, loaded_files
  104. def get_knowledge_based_answer(self,
  105. query,
  106. vs_path,
  107. chat_history=[], ):
  108. prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
  109. 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
  110. 已知内容:
  111. {context}
  112. 问题:
  113. {question}"""
  114. prompt = PromptTemplate(
  115. template=prompt_template,
  116. input_variables=["context", "question"]
  117. )
  118. self.llm.history = chat_history
  119. vector_store = FAISSVS.load_local(vs_path, self.embeddings)
  120. knowledge_chain = RetrievalQA.from_llm(
  121. llm=self.llm,
  122. retriever=vector_store.as_retriever(search_kwargs={"k": self.top_k}),
  123. prompt=prompt
  124. )
  125. knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
  126. input_variables=["page_content"], template="{page_content}"
  127. )
  128. knowledge_chain.return_source_documents = True
  129. result = knowledge_chain({"query": query})
  130. self.llm.history[-1][0] = query
  131. return result, self.llm.history