import gradio as gr import os import shutil from chains.local_doc_qa import LocalDocQA from configs.model_config import * import nltk nltk.data.path = [os.path.join(os.path.dirname(__file__), "nltk_data")] + nltk.data.path # return top-k text chunk from vector store VECTOR_SEARCH_TOP_K = 6 # LLM input history length LLM_HISTORY_LEN = 3 def get_vs_list(): if not os.path.exists(VS_ROOT_PATH): return [] return os.listdir(VS_ROOT_PATH) vs_list = ["新建知识库"] + get_vs_list() embedding_model_dict_list = list(embedding_model_dict.keys()) llm_model_dict_list = list(llm_model_dict.keys()) local_doc_qa = LocalDocQA() def get_answer(query, vs_path, history, mode, streaming: bool = STREAMING): if mode == "知识库问答" and vs_path: for resp, history in local_doc_qa.get_knowledge_based_answer( query=query, vs_path=vs_path, chat_history=history, streaming=streaming): source = "\n\n" source += "".join( [f"""
出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}\n""" f"""{doc.page_content}\n""" f"""
""" for i, doc in enumerate(resp["source_documents"])]) history[-1][-1] += source yield history, "" else: for resp, history in local_doc_qa.llm._call(query, history, streaming=streaming): history[-1][-1] = resp + ( "\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "") yield history, "" def update_status(history, status): history = history + [[None, status]] print(status) return history def init_model(): try: local_doc_qa.init_cfg() local_doc_qa.llm._call("你好") reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话""" print(reply) return reply except Exception as e: print(e) reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮""" if str(e) == "Unknown platform: darwin": print("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:" " https://github.com/imClumsyPanda/langchain-ChatGLM") else: print(reply) return reply def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, history): try: local_doc_qa.init_cfg(llm_model=llm_model, embedding_model=embedding_model, llm_history_len=llm_history_len, use_ptuning_v2=use_ptuning_v2, top_k=top_k,) model_status = """模型已成功重新加载,可以开始对话,或从右侧选择模式后开始对话""" print(model_status) except Exception as e: print(e) model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮""" print(model_status) return history + [[None, model_status]] def get_vector_store(vs_id, files, history): vs_path = os.path.join(VS_ROOT_PATH, vs_id) filelist = [] for file in files: filename = os.path.split(file.name)[-1] shutil.move(file.name, os.path.join(UPLOAD_ROOT_PATH, filename)) filelist.append(os.path.join(UPLOAD_ROOT_PATH, filename)) if local_doc_qa.llm and local_doc_qa.embeddings: vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, vs_path) if len(loaded_files): file_status = f"已上传 {'、'.join([os.path.split(i)[-1] for i in loaded_files])} 至知识库,并已加载知识库,请开始提问" else: file_status = "文件未成功加载,请重新上传文件" else: file_status = "模型未完成加载,请先在加载模型后再导入文件" vs_path = None print(file_status) return vs_path, None, history + [[None, file_status]] def change_vs_name_input(vs_id): if vs_id == "新建知识库": return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), None else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), os.path.join(VS_ROOT_PATH, vs_id) def change_mode(mode): if mode == "知识库问答": return gr.update(visible=True) else: return gr.update(visible=False) def add_vs_name(vs_name, vs_list, chatbot): if vs_name in vs_list: vs_status = "与已有知识库名称冲突,请重新选择其他名称后提交" chatbot = chatbot + [[None, vs_status]] return gr.update(visible=True), vs_list, chatbot else: vs_status = f"""已新增知识库"{vs_name}",将在上传文件并载入成功后进行存储。请在开始对话前,先完成文件上传。 """ chatbot = chatbot + [[None, vs_status]] return gr.update(visible=True, choices=vs_list + [vs_name], value=vs_name), vs_list + [vs_name], chatbot block_css = """.importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; }""" webui_title = """ # 🎉langchain-ChatGLM WebUI🎉 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) """ init_message = """欢迎使用 langchain-ChatGLM Web UI! 请在右侧切换模式,目前支持直接与 LLM 模型对话或基于本地知识库问答。 知识库问答模式中,选择知识库名称后,即可开始问答,如有需要可以在选择知识库名称后上传文件/文件夹至知识库。 知识库暂不支持文件删除,该功能将在后续版本中推出。 """ model_status = init_model() with gr.Blocks(css=block_css) as demo: vs_path, file_status, model_status, vs_list = gr.State(""), gr.State(""), gr.State(model_status), gr.State(vs_list) gr.Markdown(webui_title) with gr.Tab("对话"): with gr.Row(): with gr.Column(scale=10): chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]], elem_id="chat-box", show_label=False).style(height=750) query = gr.Textbox(show_label=False, placeholder="请输入提问内容,按回车进行提交", ).style(container=False) with gr.Column(scale=5): mode = gr.Radio(["LLM 对话", "知识库问答"], label="请选择使用模式", value="知识库问答", ) vs_setting = gr.Accordion("配置知识库") mode.change(fn=change_mode, inputs=mode, outputs=vs_setting) with vs_setting: select_vs = gr.Dropdown(vs_list.value, label="请选择要加载的知识库", interactive=True, value=vs_list.value[0] if len(vs_list.value) > 0 else None ) vs_name = gr.Textbox(label="请输入新建知识库名称", lines=1, interactive=True) vs_add = gr.Button(value="添加至知识库选项") vs_add.click(fn=add_vs_name, inputs=[vs_name, vs_list, chatbot], outputs=[select_vs, vs_list, chatbot]) file2vs = gr.Column(visible=False) with file2vs: # load_vs = gr.Button("加载知识库") gr.Markdown("向知识库中添加文件") with gr.Tab("上传文件"): files = gr.File(label="添加文件", file_types=['.txt', '.md', '.docx', '.pdf'], file_count="multiple", show_label=False ) load_file_button = gr.Button("上传文件并加载知识库") with gr.Tab("上传文件夹"): folder_files = gr.File(label="添加文件", # file_types=['.txt', '.md', '.docx', '.pdf'], file_count="directory", show_label=False ) load_folder_button = gr.Button("上传文件夹并加载知识库") # load_vs.click(fn=) select_vs.change(fn=change_vs_name_input, inputs=select_vs, outputs=[vs_name, vs_add, file2vs, vs_path]) # 将上传的文件保存到content文件夹下,并更新下拉框 load_file_button.click(get_vector_store, show_progress=True, inputs=[select_vs, files, chatbot], outputs=[vs_path, files, chatbot], ) load_folder_button.click(get_vector_store, show_progress=True, inputs=[select_vs, folder_files, chatbot], outputs=[vs_path, folder_files, chatbot], ) query.submit(get_answer, [query, vs_path, chatbot, mode], [chatbot, query], ) with gr.Tab("模型配置"): llm_model = gr.Radio(llm_model_dict_list, label="LLM 模型", value=LLM_MODEL, interactive=True) llm_history_len = gr.Slider(0, 10, value=LLM_HISTORY_LEN, step=1, label="LLM 对话轮数", interactive=True) use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2, label="使用p-tuning-v2微调过的模型", interactive=True) embedding_model = gr.Radio(embedding_model_dict_list, label="Embedding 模型", value=EMBEDDING_MODEL, interactive=True) top_k = gr.Slider(1, 20, value=VECTOR_SEARCH_TOP_K, step=1, label="向量匹配 top k", interactive=True) load_model_button = gr.Button("重新加载模型") load_model_button.click(reinit_model, show_progress=True, inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, chatbot], outputs=chatbot ) (demo .queue(concurrency_count=3) .launch(server_name='0.0.0.0', server_port=7860, show_api=False, share=False, inbrowser=False))