from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import UnstructuredFileLoader from models.chatglm_llm import ChatGLM import sentence_transformers import os from configs.model_config import * import datetime from typing import List from textsplitter import ChineseTextSplitter # return top-k text chunk from vector store VECTOR_SEARCH_TOP_K = 6 # LLM input history length LLM_HISTORY_LEN = 3 def load_file(filepath): if filepath.lower().endswith(".pdf"): loader = UnstructuredFileLoader(filepath) textsplitter = ChineseTextSplitter(pdf=True) docs = loader.load_and_split(textsplitter) else: loader = UnstructuredFileLoader(filepath, mode="elements") textsplitter = ChineseTextSplitter(pdf=False) docs = loader.load_and_split(text_splitter=textsplitter) return docs class LocalDocQA: llm: object = None embeddings: object = None def init_cfg(self, embedding_model: str = EMBEDDING_MODEL, embedding_device=EMBEDDING_DEVICE, llm_history_len: int = LLM_HISTORY_LEN, llm_model: str = LLM_MODEL, llm_device=LLM_DEVICE, top_k=VECTOR_SEARCH_TOP_K, use_ptuning_v2: bool = USE_PTUNING_V2 ): self.llm = ChatGLM() self.llm.load_model(model_name_or_path=llm_model_dict[llm_model], llm_device=llm_device, use_ptuning_v2=use_ptuning_v2) self.llm.history_len = llm_history_len self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model], ) self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name, device=embedding_device) self.top_k = top_k def init_knowledge_vector_store(self, filepath: str or List[str], vs_path: str or os.PathLike = None): loaded_files = [] if isinstance(filepath, str): if not os.path.exists(filepath): print("路径不存在") return None elif os.path.isfile(filepath): file = os.path.split(filepath)[-1] try: docs = load_file(filepath) print(f"{file} 已成功加载") loaded_files.append(filepath) except Exception as e: print(e) print(f"{file} 未能成功加载") return None elif os.path.isdir(filepath): docs = [] for file in os.listdir(filepath): fullfilepath = os.path.join(filepath, file) try: docs += load_file(fullfilepath) print(f"{file} 已成功加载") loaded_files.append(fullfilepath) except Exception as e: print(e) print(f"{file} 未能成功加载") else: docs = [] for file in filepath: try: docs += load_file(file) print(f"{file} 已成功加载") loaded_files.append(file) except Exception as e: print(e) print(f"{file} 未能成功加载") if vs_path and os.path.isdir(vs_path): vector_store = FAISS.load_local(vs_path, self.embeddings) vector_store.add_documents(docs) else: if not vs_path: vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}""" vector_store = FAISS.from_documents(docs, self.embeddings) vector_store.save_local(vs_path) return vs_path if len(docs) > 0 else None, loaded_files def get_knowledge_based_answer(self, query, vs_path, chat_history=[], ): prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。 如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。 已知内容: {context} 问题: {question}""" prompt = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) self.llm.history = chat_history vector_store = FAISS.load_local(vs_path, self.embeddings) knowledge_chain = RetrievalQA.from_llm( llm=self.llm, retriever=vector_store.as_retriever(search_kwargs={"k": self.top_k}), prompt=prompt ) knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) knowledge_chain.return_source_documents = True result = knowledge_chain({"query": query}) self.llm.history[-1][0] = query return result, self.llm.history