import gradio as gr import os import shutil from chains.local_doc_qa import LocalDocQA from configs.model_config import * # return top-k text chunk from vector store VECTOR_SEARCH_TOP_K = 6 # LLM input history length LLM_HISTORY_LEN = 3 def get_file_list(): if not os.path.exists("content"): return [] return [f for f in os.listdir("content")] file_list = get_file_list() embedding_model_dict_list = list(embedding_model_dict.keys()) llm_model_dict_list = list(llm_model_dict.keys()) local_doc_qa = LocalDocQA() def upload_file(file): if not os.path.exists("content"): os.mkdir("content") filename = os.path.basename(file.name) shutil.move(file.name, "content/" + filename) # file_list首位插入新上传的文件 file_list.insert(0, filename) return gr.Dropdown.update(choices=file_list, value=filename) def get_answer(query, vs_path, history): if vs_path: resp, history = local_doc_qa.get_knowledge_based_answer( query=query, vs_path=vs_path, chat_history=history) else: history = history + [[None, "请先加载文件后,再进行提问。"]] return history, "" def update_status(history, status): history = history + [[None, status]] print(status) return history def init_model(): try: local_doc_qa.init_cfg() return """模型已成功加载,请选择文件后点击"加载文件"按钮""" except Exception as e: print(e) return """模型未成功加载,请重新选择后点击"加载模型"按钮""" def reinit_model(llm_model, embedding_model, llm_history_len, top_k, history): try: local_doc_qa.init_cfg(llm_model=llm_model, embedding_model=embedding_model, llm_history_len=llm_history_len, top_k=top_k) model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮""" except Exception as e: print(e) model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮""" return history + [[None, model_status]] def get_vector_store(filepath, history): if local_doc_qa.llm and local_doc_qa.embeddings: vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath]) if vs_path: file_status = "文件已成功加载,请开始提问" else: file_status = "文件未成功加载,请重新上传文件" else: file_status = "模型未完成加载,请先在加载模型后再导入文件" vs_path = None return vs_path, history + [[None, file_status]] block_css = """.importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; }""" webui_title = """ # 🎉langchain-ChatGLM WebUI🎉 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) """ init_message = """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤: 1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示 2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示 3. 输入要提交的问题后,点击回车提交 """ model_status = init_model() with gr.Blocks(css=block_css) as demo: vs_path, file_status, model_status = gr.State(""), gr.State(""), gr.State(model_status) gr.Markdown(webui_title) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]], elem_id="chat-box", show_label=False).style(height=750) query = gr.Textbox(show_label=False, placeholder="请输入提问内容,按回车进行提交", ).style(container=False) with gr.Column(scale=1): llm_model = gr.Radio(llm_model_dict_list, label="LLM 模型", value=LLM_MODEL, interactive=True) llm_history_len = gr.Slider(0, 10, value=LLM_HISTORY_LEN, step=1, label="LLM history len", interactive=True) embedding_model = gr.Radio(embedding_model_dict_list, label="Embedding 模型", value=EMBEDDING_MODEL, interactive=True) top_k = gr.Slider(1, 20, value=VECTOR_SEARCH_TOP_K, step=1, label="向量匹配 top k", interactive=True) load_model_button = gr.Button("重新加载模型") # with gr.Column(): with gr.Tab("select"): selectFile = gr.Dropdown(file_list, label="content file", interactive=True, value=file_list[0] if len(file_list) > 0 else None) with gr.Tab("upload"): file = gr.File(label="content file", file_types=['.txt', '.md', '.docx', '.pdf'] ) # .style(height=100) load_file_button = gr.Button("加载文件") load_model_button.click(reinit_model, show_progress=True, inputs=[llm_model, embedding_model, llm_history_len, top_k, chatbot], outputs=chatbot ) # 将上传的文件保存到content文件夹下,并更新下拉框 file.upload(upload_file, inputs=file, outputs=selectFile) load_file_button.click(get_vector_store, show_progress=True, inputs=[selectFile, chatbot], outputs=[vs_path, chatbot], ) query.submit(get_answer, [query, vs_path, chatbot], [chatbot, query], ) demo.queue(concurrency_count=3).launch( server_name='0.0.0.0', share=False, inbrowser=False)