import json from langchain.llms.base import LLM from typing import Optional, List from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel, AutoConfig import torch from configs.model_config import * from langchain.callbacks.base import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from typing import Dict, Tuple, Union, Optional from utils import torch_gc DEVICE_ = LLM_DEVICE DEVICE_ID = "0" if torch.cuda.is_available() else None DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: # transformer.word_embeddings 占用1层 # transformer.final_layernorm 和 lm_head 占用1层 # transformer.layers 占用 28 层 # 总共30层分配到num_gpus张卡上 num_trans_layers = 28 per_gpu_layers = 30 / num_gpus # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError # windows下 model.device 会被设置成 transformer.word_embeddings.device # linux下 model.device 会被设置成 lm_head.device # 在调用chat或者stream_chat时,input_ids会被放到model.device上 # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 device_map = {'transformer.word_embeddings': 0, 'transformer.final_layernorm': 0, 'lm_head': 0} used = 2 gpu_target = 0 for i in range(num_trans_layers): if used >= per_gpu_layers: gpu_target += 1 used = 0 assert gpu_target < num_gpus device_map[f'transformer.layers.{i}'] = gpu_target used += 1 return device_map class ChatGLM(LLM): max_token: int = 10000 temperature: float = 0.01 top_p = 0.9 # history = [] tokenizer: object = None model: object = None history_len: int = 10 callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM" def _call(self, prompt: str, history: List[List[str]] = [], streaming: bool = STREAMING): # -> Tuple[str, List[List[str]]]: if streaming: for inum, (stream_resp, _) in enumerate(self.model.stream_chat( self.tokenizer, prompt, history=history[-self.history_len:-1] if self.history_len > 0 else [], max_length=self.max_token, temperature=self.temperature, )): torch_gc(DEVICE) if inum == 0: history += [[prompt, stream_resp]] else: history[-1] = [prompt, stream_resp] yield stream_resp, history else: response, _ = self.model.chat( self.tokenizer, prompt, history=history[-self.history_len:] if self.history_len > 0 else [], max_length=self.max_token, temperature=self.temperature, ) torch_gc(DEVICE) history += [[prompt, response]] yield response, history # def chat(self, # prompt: str) -> str: # response, _ = self.model.chat( # self.tokenizer, # prompt, # history=self.history[-self.history_len:] if self.history_len > 0 else [], # max_length=self.max_token, # temperature=self.temperature, # ) # torch_gc() # self.history = self.history + [[None, response]] # return response def load_model(self, model_name_or_path: str = "THUDM/chatglm-6b", llm_device=LLM_DEVICE, use_ptuning_v2=False, device_map: Optional[Dict[str, int]] = None, **kwargs): self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True ) model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) if use_ptuning_v2: try: prefix_encoder_file = open('ptuning-v2/config.json', 'r') prefix_encoder_config = json.loads(prefix_encoder_file.read()) prefix_encoder_file.close() model_config.pre_seq_len = prefix_encoder_config['pre_seq_len'] model_config.prefix_projection = prefix_encoder_config['prefix_projection'] except Exception as e: print(e) print("加载PrefixEncoder config.json失败") if torch.cuda.is_available() and llm_device.lower().startswith("cuda"): # 根据当前设备GPU数量决定是否进行多卡部署 num_gpus = torch.cuda.device_count() if num_gpus < 2 and device_map is None: self.model = ( AutoModel.from_pretrained( model_name_or_path, config=model_config, trust_remote_code=True, **kwargs) .half() .cuda() ) else: from accelerate import dispatch_model model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True, config=model_config, **kwargs) .half()) # 可传入device_map自定义每张卡的部署情况 if device_map is None: device_map = auto_configure_device_map(num_gpus) self.model = dispatch_model(model, device_map=device_map) else: self.model = ( AutoModel.from_pretrained( model_name_or_path, config=model_config, trust_remote_code=True, **kwargs) .float() .to(llm_device) ) if use_ptuning_v2: try: prefix_state_dict = torch.load('ptuning-v2/pytorch_model.bin') new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) self.model.transformer.prefix_encoder.float() except Exception as e: print(e) print("加载PrefixEncoder模型参数失败") self.model = self.model.eval() if __name__ == "__main__": llm = ChatGLM() llm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL], llm_device=LLM_DEVICE, ) last_print_len=0 for resp, history in llm._call("你好", streaming=True): print(resp[last_print_len:], end="", flush=True) last_print_len = len(resp) for resp, history in llm._call("你好", streaming=False): print(resp) pass