|
@@ -1,7 +1,8 @@
|
|
import gradio as gr
|
|
import gradio as gr
|
|
import os
|
|
import os
|
|
import shutil
|
|
import shutil
|
|
-import cli_demo as kb
|
|
|
|
|
|
+from chains.local_doc_qa import LocalDocQA
|
|
|
|
+from configs.model_config import *
|
|
|
|
|
|
|
|
|
|
def get_file_list():
|
|
def get_file_list():
|
|
@@ -12,9 +13,11 @@ def get_file_list():
|
|
|
|
|
|
file_list = get_file_list()
|
|
file_list = get_file_list()
|
|
|
|
|
|
-embedding_model_dict_list = list(kb.embedding_model_dict.keys())
|
|
|
|
|
|
+embedding_model_dict_list = list(embedding_model_dict.keys())
|
|
|
|
|
|
-llm_model_dict_list = list(kb.llm_model_dict.keys())
|
|
|
|
|
|
+llm_model_dict_list = list(llm_model_dict.keys())
|
|
|
|
+
|
|
|
|
+local_doc_qa = LocalDocQA()
|
|
|
|
|
|
|
|
|
|
def upload_file(file):
|
|
def upload_file(file):
|
|
@@ -27,9 +30,9 @@ def upload_file(file):
|
|
return gr.Dropdown.update(choices=file_list, value=filename)
|
|
return gr.Dropdown.update(choices=file_list, value=filename)
|
|
|
|
|
|
|
|
|
|
-def get_answer(query, vector_store, history):
|
|
|
|
- resp, history = kb.get_knowledge_based_answer(
|
|
|
|
- query=query, vector_store=vector_store, chat_history=history)
|
|
|
|
|
|
+def get_answer(query, vs_path, history):
|
|
|
|
+ resp, history = local_doc_qa.get_knowledge_based_answer(
|
|
|
|
+ query=query, vs_path=vs_path, chat_history=history)
|
|
return history, history
|
|
return history, history
|
|
|
|
|
|
|
|
|
|
@@ -41,6 +44,25 @@ def get_file_status(history):
|
|
return history + [[None, "文档已完成加载,请开始提问"]]
|
|
return history + [[None, "文档已完成加载,请开始提问"]]
|
|
|
|
|
|
|
|
|
|
|
|
+def init_model():
|
|
|
|
+ try:
|
|
|
|
+ local_doc_qa.init_cfg()
|
|
|
|
+ return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
|
|
|
|
+ except:
|
|
|
|
+ return """模型未成功加载,请重新选择后点击"加载模型"按钮"""
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def reinit_model(llm_model, embedding_model, llm_history_len, top_k):
|
|
|
|
+ local_doc_qa.init_cfg(llm_model=llm_model,
|
|
|
|
+ embedding_model=embedding_model,
|
|
|
|
+ llm_history_len=llm_history_len,
|
|
|
|
+ top_k=top_k),
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+model_status = gr.State()
|
|
|
|
+history = gr.State([])
|
|
|
|
+vs_path = gr.State()
|
|
|
|
+model_status = init_model()
|
|
with gr.Blocks(css="""
|
|
with gr.Blocks(css="""
|
|
.importantButton {
|
|
.importantButton {
|
|
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
|
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
|
@@ -63,89 +85,78 @@ with gr.Blocks(css="""
|
|
with gr.Row():
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
with gr.Column(scale=2):
|
|
chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
|
|
chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
|
|
-1. 选择语言模型、Embedding 模型及相关参数后点击"step.1: setting",并等待加载完成提示
|
|
|
|
-2. 上传或选择已有文件作为本地知识文档输入后点击"step.2 loading",并等待加载完成提示
|
|
|
|
-3. 输入要提交的问题后点击"step.3 asking" """]],
|
|
|
|
|
|
+1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示
|
|
|
|
+2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示
|
|
|
|
+3. 输入要提交的问题后,点击回车提交 """], [None, str(model_status)]],
|
|
elem_id="chat-box",
|
|
elem_id="chat-box",
|
|
show_label=False).style(height=600)
|
|
show_label=False).style(height=600)
|
|
- with gr.Column(scale=1):
|
|
|
|
- with gr.Column():
|
|
|
|
- llm_model = gr.Radio(llm_model_dict_list,
|
|
|
|
- label="llm model",
|
|
|
|
- value="chatglm-6b",
|
|
|
|
- interactive=True)
|
|
|
|
- LLM_HISTORY_LEN = gr.Slider(0,
|
|
|
|
- 10,
|
|
|
|
- value=3,
|
|
|
|
- step=1,
|
|
|
|
- label="LLM history len",
|
|
|
|
- interactive=True)
|
|
|
|
- embedding_model = gr.Radio(embedding_model_dict_list,
|
|
|
|
- label="embedding model",
|
|
|
|
- value="text2vec",
|
|
|
|
- interactive=True)
|
|
|
|
- VECTOR_SEARCH_TOP_K = gr.Slider(1,
|
|
|
|
- 20,
|
|
|
|
- value=6,
|
|
|
|
- step=1,
|
|
|
|
- label="vector search top k",
|
|
|
|
- interactive=True)
|
|
|
|
- load_model_button = gr.Button("step.1:setting")
|
|
|
|
- load_model_button.click(lambda *args:
|
|
|
|
- kb.init_cfg(args[0], args[1], args[2], args[3]),
|
|
|
|
- show_progress=True,
|
|
|
|
- api_name="init_cfg",
|
|
|
|
- inputs=[llm_model, embedding_model, LLM_HISTORY_LEN,VECTOR_SEARCH_TOP_K]
|
|
|
|
- ).then(
|
|
|
|
- get_model_status, chatbot, chatbot
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- with gr.Column():
|
|
|
|
- with gr.Tab("select"):
|
|
|
|
- selectFile = gr.Dropdown(file_list,
|
|
|
|
- label="content file",
|
|
|
|
- interactive=True,
|
|
|
|
- value=file_list[0] if len(file_list) > 0 else None)
|
|
|
|
- with gr.Tab("upload"):
|
|
|
|
- file = gr.File(label="content file",
|
|
|
|
- file_types=['.txt', '.md', '.docx', '.pdf']
|
|
|
|
- ).style(height=100)
|
|
|
|
- # 将上传的文件保存到content文件夹下,并更新下拉框
|
|
|
|
- file.upload(upload_file,
|
|
|
|
- inputs=file,
|
|
|
|
- outputs=selectFile)
|
|
|
|
- history = gr.State([])
|
|
|
|
- vector_store = gr.State()
|
|
|
|
- load_button = gr.Button("step.2:loading")
|
|
|
|
- load_button.click(lambda fileName:
|
|
|
|
- kb.init_knowledge_vector_store(
|
|
|
|
- "content/" + fileName),
|
|
|
|
- show_progress=True,
|
|
|
|
- api_name="init_knowledge_vector_store",
|
|
|
|
- inputs=selectFile,
|
|
|
|
- outputs=vector_store
|
|
|
|
- ).then(
|
|
|
|
- get_file_status,
|
|
|
|
- chatbot,
|
|
|
|
- chatbot,
|
|
|
|
- show_progress=True,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- with gr.Row():
|
|
|
|
- with gr.Column(scale=2):
|
|
|
|
query = gr.Textbox(show_label=False,
|
|
query = gr.Textbox(show_label=False,
|
|
- placeholder="Prompts",
|
|
|
|
|
|
+ placeholder="请提问",
|
|
lines=1,
|
|
lines=1,
|
|
value="用200字总结一下"
|
|
value="用200字总结一下"
|
|
).style(container=False)
|
|
).style(container=False)
|
|
|
|
+
|
|
with gr.Column(scale=1):
|
|
with gr.Column(scale=1):
|
|
- generate_button = gr.Button("step.3:asking",
|
|
|
|
- elem_classes="importantButton")
|
|
|
|
- generate_button.click(get_answer,
|
|
|
|
- [query, vector_store, chatbot],
|
|
|
|
- [chatbot, history],
|
|
|
|
- api_name="get_knowledge_based_answer"
|
|
|
|
- )
|
|
|
|
|
|
+ llm_model = gr.Radio(llm_model_dict_list,
|
|
|
|
+ label="LLM 模型",
|
|
|
|
+ value="chatglm-6b",
|
|
|
|
+ interactive=True)
|
|
|
|
+ llm_history_len = gr.Slider(0,
|
|
|
|
+ 10,
|
|
|
|
+ value=3,
|
|
|
|
+ step=1,
|
|
|
|
+ label="LLM history len",
|
|
|
|
+ interactive=True)
|
|
|
|
+ embedding_model = gr.Radio(embedding_model_dict_list,
|
|
|
|
+ label="Embedding 模型",
|
|
|
|
+ value="text2vec",
|
|
|
|
+ interactive=True)
|
|
|
|
+ top_k = gr.Slider(1,
|
|
|
|
+ 20,
|
|
|
|
+ value=6,
|
|
|
|
+ step=1,
|
|
|
|
+ label="向量匹配 top k",
|
|
|
|
+ interactive=True)
|
|
|
|
+ load_model_button = gr.Button("重新加载模型")
|
|
|
|
+
|
|
|
|
+ # with gr.Column():
|
|
|
|
+ with gr.Tab("select"):
|
|
|
|
+ selectFile = gr.Dropdown(file_list,
|
|
|
|
+ label="content file",
|
|
|
|
+ interactive=True,
|
|
|
|
+ value=file_list[0] if len(file_list) > 0 else None)
|
|
|
|
+ with gr.Tab("upload"):
|
|
|
|
+ file = gr.File(label="content file",
|
|
|
|
+ file_types=['.txt', '.md', '.docx', '.pdf']
|
|
|
|
+ ) # .style(height=100)
|
|
|
|
+ load_button = gr.Button("重新加载文件")
|
|
|
|
+ load_model_button.click(reinit_model,
|
|
|
|
+ show_progress=True,
|
|
|
|
+ api_name="init_cfg",
|
|
|
|
+ inputs=[llm_model, embedding_model, llm_history_len, top_k]
|
|
|
|
+ ).then(
|
|
|
|
+ get_model_status, chatbot, chatbot
|
|
|
|
+ )
|
|
|
|
+ # 将上传的文件保存到content文件夹下,并更新下拉框
|
|
|
|
+ file.upload(upload_file,
|
|
|
|
+ inputs=file,
|
|
|
|
+ outputs=selectFile)
|
|
|
|
+ # load_button.click(local_doc_qa.init_knowledge_vector_store,
|
|
|
|
+ # show_progress=True,
|
|
|
|
+ # api_name="init_knowledge_vector_store",
|
|
|
|
+ # inputs=selectFile,
|
|
|
|
+ # outputs=vs_path
|
|
|
|
+ # ).then(
|
|
|
|
+ # get_file_status,
|
|
|
|
+ # chatbot,
|
|
|
|
+ # chatbot,
|
|
|
|
+ # show_progress=True,
|
|
|
|
+ # )
|
|
|
|
+ # query.submit(get_answer,
|
|
|
|
+ # [query, vs_path, chatbot],
|
|
|
|
+ # [chatbot, history],
|
|
|
|
+ # api_name="get_knowledge_based_answer"
|
|
|
|
+ # )
|
|
|
|
|
|
demo.queue(concurrency_count=3).launch(
|
|
demo.queue(concurrency_count=3).launch(
|
|
server_name='0.0.0.0', share=False, inbrowser=False)
|
|
server_name='0.0.0.0', share=False, inbrowser=False)
|