|
@@ -32,12 +32,12 @@ extension RSA: Signature {
|
|
|
guard let d = d else { throw RSA.Error.noPrivateKey }
|
|
|
|
|
|
// Hash & Encode Message
|
|
|
- let hashedAndEncoded = try RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySize / 8)
|
|
|
+ let hashedAndEncoded = try RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySizeBytes)
|
|
|
|
|
|
/// Calculate the Signature
|
|
|
let signedData = BigUInteger(Data(hashedAndEncoded)).power(d, modulus: self.n).serialize().bytes
|
|
|
|
|
|
- return variant.formatSignedBytes(signedData, blockSize: self.keySize / 8)
|
|
|
+ return variant.formatSignedBytes(signedData, blockSize: self.keySizeBytes)
|
|
|
}
|
|
|
|
|
|
public func verify(signature: ArraySlice<UInt8>, for expectedData: ArraySlice<UInt8>) throws -> Bool {
|
|
@@ -54,15 +54,11 @@ extension RSA: Signature {
|
|
|
/// [IETF Verification Spec](https://datatracker.ietf.org/doc/html/rfc8017#section-8.2.2)
|
|
|
public func verify(signature: Array<UInt8>, for bytes: Array<UInt8>, variant: SignatureVariant) throws -> Bool {
|
|
|
/// Step 1: Ensure the signature is the same length as the key's modulus
|
|
|
- guard signature.count == (self.keySize / 8) || (signature.count - 1) == (self.keySize / 8) else { throw Error.invalidSignatureLength }
|
|
|
+ guard signature.count == self.keySizeBytes else { throw Error.invalidSignatureLength }
|
|
|
|
|
|
- //print(try Array<UInt8>(RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySize / 8)))
|
|
|
- //print(try Array<UInt8>(RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySize / 8)).count)
|
|
|
- var expectedData = try RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySize / 8)
|
|
|
- if expectedData.count == self.keySize / 8 && expectedData.prefix(1) == [0x00] { expectedData = Array(expectedData.dropFirst()) }
|
|
|
- //print(expectedData)
|
|
|
- //print(expectedData.count)
|
|
|
- //let expectedData = try Array<UInt8>(RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySize / 8))
|
|
|
+ /// Prepare the expected message for signature comparison
|
|
|
+ var expectedData = try RSA.hashedAndEncoded(bytes, variant: variant, keySizeInBytes: self.keySizeBytes)
|
|
|
+ if expectedData.count == self.keySizeBytes && expectedData.prefix(1) == [0x00] { expectedData = Array(expectedData.dropFirst()) }
|
|
|
|
|
|
/// Step 2: 'Decrypt' the signature
|
|
|
let signatureResult = BigUInteger(Data(signature)).power(self.e, modulus: self.n).serialize().bytes
|
|
@@ -81,24 +77,14 @@ extension RSA: Signature {
|
|
|
let hashedMessage = variant.calculateHash(bytes)
|
|
|
|
|
|
guard variant.enforceLength(hashedMessage, keySizeInBytes: keySizeInBytes) else { throw RSA.Error.invalidMessageLengthForSigning }
|
|
|
-
|
|
|
+
|
|
|
/// 2. Encode the algorithm ID for the hash function and the hash value into an ASN.1 value of type DigestInfo
|
|
|
/// PKCS#1_15 DER Structure (OID == sha256WithRSAEncryption)
|
|
|
-// let asn: ASN1.Node = .sequence(nodes: [
|
|
|
-// .sequence(nodes: [
|
|
|
-// .objectIdentifier(data: Data(variant.identifier)),
|
|
|
-// .null
|
|
|
-// ]),
|
|
|
-// .octetString(data: Data(hashedMessage))
|
|
|
-// ])
|
|
|
-//
|
|
|
-// let t = ASN1.Encoder.encode(asn)
|
|
|
let t = variant.encode(hashedMessage)
|
|
|
|
|
|
if case .raw = variant { return t }
|
|
|
-
|
|
|
+
|
|
|
/// 3. If emLen < tLen + 11, output "intended encoded message length too short" and stop
|
|
|
- //print("Checking Key Size: \(keySizeInBytes) < \(t.count + 11)")
|
|
|
if keySizeInBytes < t.count + 11 { throw RSA.Error.invalidMessageLengthForSigning }
|
|
|
|
|
|
/// 4. Generate an octet string PS consisting of emLen - tLen - 3
|
|
@@ -200,10 +186,10 @@ extension RSA {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- internal func enforceLength(_ bytes: Array<UInt8>, keySizeInBytes:Int) -> Bool {
|
|
|
+ internal func enforceLength(_ bytes: Array<UInt8>, keySizeInBytes: Int) -> Bool {
|
|
|
switch self {
|
|
|
case .raw, .digest_pkcs1v15_RAW:
|
|
|
- return bytes.count <= (keySizeInBytes)
|
|
|
+ return bytes.count <= keySizeInBytes
|
|
|
case .digest_pkcs1v15_MD5:
|
|
|
return bytes.count <= 16
|
|
|
case .digest_pkcs1v15_SHA1:
|
|
@@ -231,36 +217,35 @@ extension RSA {
|
|
|
return true
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- internal func encode(_ bytes:Array<UInt8>) -> Array<UInt8> {
|
|
|
+
|
|
|
+ internal func encode(_ bytes: Array<UInt8>) -> Array<UInt8> {
|
|
|
switch self {
|
|
|
- case .raw, .digest_pkcs1v15_RAW:
|
|
|
- return bytes
|
|
|
-
|
|
|
- default:
|
|
|
- let asn: ASN1.Node = .sequence(nodes: [
|
|
|
- .sequence(nodes: [
|
|
|
- .objectIdentifier(data: Data(self.identifier)),
|
|
|
- .null
|
|
|
- ]),
|
|
|
- .octetString(data: Data(bytes))
|
|
|
- ])
|
|
|
+ case .raw, .digest_pkcs1v15_RAW:
|
|
|
+ return bytes
|
|
|
+
|
|
|
+ default:
|
|
|
+ let asn: ASN1.Node = .sequence(nodes: [
|
|
|
+ .sequence(nodes: [
|
|
|
+ .objectIdentifier(data: Data(self.identifier)),
|
|
|
+ .null
|
|
|
+ ]),
|
|
|
+ .octetString(data: Data(bytes))
|
|
|
+ ])
|
|
|
|
|
|
- return ASN1.Encoder.encode(asn)
|
|
|
+ return ASN1.Encoder.encode(asn)
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
|
|
|
/// Right now the only Padding Scheme supported is [EMCS-PKCS1v15](https://www.rfc-editor.org/rfc/rfc8017#section-9.2) (others include [EMSA-PSS](https://www.rfc-editor.org/rfc/rfc8017#section-9.1))
|
|
|
internal func pad(bytes: Array<UInt8>, to blockSize: Int) -> Array<UInt8> {
|
|
|
switch self {
|
|
|
- case .raw:
|
|
|
- return bytes
|
|
|
- default:
|
|
|
- return Padding.emsa_pkcs1v15.add(to: bytes, blockSize: blockSize)
|
|
|
+ case .raw:
|
|
|
+ return bytes
|
|
|
+ default:
|
|
|
+ return Padding.emsa_pkcs1v15.add(to: bytes, blockSize: blockSize)
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
/// Zero pads a signature to the specified block size
|
|
|
/// - Parameters:
|
|
|
/// - bytes: The signed bytes
|