123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- from modules import shared
- from modules.sd_hijack_utils import CondFunc
- has_ipex = False
- try:
- import torch
- import intel_extension_for_pytorch as ipex # noqa: F401
- has_ipex = True
- except Exception:
- pass
- def check_for_xpu():
- return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
- def get_xpu_device_string():
- if shared.cmd_opts.device_id is not None:
- return f"xpu:{shared.cmd_opts.device_id}"
- return "xpu"
- def torch_xpu_gc():
- with torch.xpu.device(get_xpu_device_string()):
- torch.xpu.empty_cache()
- has_xpu = check_for_xpu()
- # Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
- # Here we implement a slicing algorithm to split large batch size into smaller chunks,
- # so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
- # The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
- # which is the best trade-off between VRAM usage and performance.
- ARC_SINGLE_ALLOCATION_LIMIT = {}
- orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention
- def torch_xpu_scaled_dot_product_attention(
- query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs
- ):
- # cast to same dtype first
- key = key.to(query.dtype)
- value = value.to(query.dtype)
- if attn_mask is not None and attn_mask.dtype != torch.bool:
- attn_mask = attn_mask.to(query.dtype)
- N = query.shape[:-2] # Batch size
- L = query.size(-2) # Target sequence length
- E = query.size(-1) # Embedding dimension of the query and key
- S = key.size(-2) # Source sequence length
- Ev = value.size(-1) # Embedding dimension of the value
- total_batch_size = torch.numel(torch.empty(N))
- device_id = query.device.index
- if device_id not in ARC_SINGLE_ALLOCATION_LIMIT:
- ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024)
- batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size()))
- if total_batch_size <= batch_size_limit:
- return orig_sdp_attn_func(
- query,
- key,
- value,
- attn_mask,
- dropout_p,
- is_causal,
- *args, **kwargs
- )
- query = torch.reshape(query, (-1, L, E))
- key = torch.reshape(key, (-1, S, E))
- value = torch.reshape(value, (-1, S, Ev))
- if attn_mask is not None:
- attn_mask = attn_mask.view(-1, L, S)
- chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit
- outputs = []
- for i in range(chunk_count):
- attn_mask_chunk = (
- None
- if attn_mask is None
- else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :]
- )
- chunk_output = orig_sdp_attn_func(
- query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
- key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
- value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
- attn_mask_chunk,
- dropout_p,
- is_causal,
- *args, **kwargs
- )
- outputs.append(chunk_output)
- result = torch.cat(outputs, dim=0)
- return torch.reshape(result, (*N, L, Ev))
- def is_xpu_device(device: str | torch.device = None):
- if device is None:
- return False
- if isinstance(device, str):
- return device.startswith("xpu")
- return device.type == "xpu"
- if has_xpu:
- try:
- # torch.Generator supports "xpu" device since 2.1
- torch.Generator("xpu")
- except RuntimeError:
- # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device (for torch < 2.1)
- CondFunc('torch.Generator',
- lambda orig_func, device=None: torch.xpu.Generator(device),
- lambda orig_func, device=None: is_xpu_device(device))
- # W/A for some OPs that could not handle different input dtypes
- CondFunc('torch.nn.functional.layer_norm',
- lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
- orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
- lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
- weight is not None and input.dtype != weight.data.dtype)
- CondFunc('torch.nn.modules.GroupNorm.forward',
- lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
- lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
- CondFunc('torch.nn.modules.linear.Linear.forward',
- lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
- lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
- CondFunc('torch.nn.modules.conv.Conv2d.forward',
- lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
- lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
- CondFunc('torch.bmm',
- lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
- lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
- CondFunc('torch.cat',
- lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
- lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
- CondFunc('torch.nn.functional.scaled_dot_product_attention',
- lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs),
- lambda orig_func, query, *args, **kwargs: query.is_xpu)
|