sd_samplers_extra.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. import torch
  2. import tqdm
  3. import k_diffusion.sampling
  4. @torch.no_grad()
  5. def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
  6. """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
  7. Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
  8. If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
  9. """
  10. extra_args = {} if extra_args is None else extra_args
  11. s_in = x.new_ones([x.shape[0]])
  12. step_id = 0
  13. from k_diffusion.sampling import to_d, get_sigmas_karras
  14. def heun_step(x, old_sigma, new_sigma, second_order=True):
  15. nonlocal step_id
  16. denoised = model(x, old_sigma * s_in, **extra_args)
  17. d = to_d(x, old_sigma, denoised)
  18. if callback is not None:
  19. callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
  20. dt = new_sigma - old_sigma
  21. if new_sigma == 0 or not second_order:
  22. # Euler method
  23. x = x + d * dt
  24. else:
  25. # Heun's method
  26. x_2 = x + d * dt
  27. denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
  28. d_2 = to_d(x_2, new_sigma, denoised_2)
  29. d_prime = (d + d_2) / 2
  30. x = x + d_prime * dt
  31. step_id += 1
  32. return x
  33. steps = sigmas.shape[0] - 1
  34. if restart_list is None:
  35. if steps >= 20:
  36. restart_steps = 9
  37. restart_times = 1
  38. if steps >= 36:
  39. restart_steps = steps // 4
  40. restart_times = 2
  41. sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
  42. restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
  43. else:
  44. restart_list = {}
  45. restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
  46. step_list = []
  47. for i in range(len(sigmas) - 1):
  48. step_list.append((sigmas[i], sigmas[i + 1]))
  49. if i + 1 in restart_list:
  50. restart_steps, restart_times, restart_max = restart_list[i + 1]
  51. min_idx = i + 1
  52. max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
  53. if max_idx < min_idx:
  54. sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
  55. while restart_times > 0:
  56. restart_times -= 1
  57. step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:]))
  58. last_sigma = None
  59. for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
  60. if last_sigma is None:
  61. last_sigma = old_sigma
  62. elif last_sigma < old_sigma:
  63. x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
  64. x = heun_step(x, old_sigma, new_sigma)
  65. last_sigma = new_sigma
  66. return x