face_restoration_utils.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180
  1. from __future__ import annotations
  2. import logging
  3. import os
  4. from functools import cached_property
  5. from typing import TYPE_CHECKING, Callable
  6. import cv2
  7. import numpy as np
  8. import torch
  9. from modules import devices, errors, face_restoration, shared
  10. if TYPE_CHECKING:
  11. from facexlib.utils.face_restoration_helper import FaceRestoreHelper
  12. logger = logging.getLogger(__name__)
  13. def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
  14. """Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
  15. assert img.shape[2] == 3, "image must be RGB"
  16. if img.dtype == "float64":
  17. img = img.astype("float32")
  18. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  19. return torch.from_numpy(img.transpose(2, 0, 1)).float()
  20. def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
  21. """
  22. Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
  23. """
  24. tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
  25. tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
  26. assert tensor.dim() == 3, "tensor must be RGB"
  27. img_np = tensor.numpy().transpose(1, 2, 0)
  28. if img_np.shape[2] == 1: # gray image, no RGB/BGR required
  29. return np.squeeze(img_np, axis=2)
  30. return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
  31. def create_face_helper(device) -> FaceRestoreHelper:
  32. from facexlib.detection import retinaface
  33. from facexlib.utils.face_restoration_helper import FaceRestoreHelper
  34. if hasattr(retinaface, 'device'):
  35. retinaface.device = device
  36. return FaceRestoreHelper(
  37. upscale_factor=1,
  38. face_size=512,
  39. crop_ratio=(1, 1),
  40. det_model='retinaface_resnet50',
  41. save_ext='png',
  42. use_parse=True,
  43. device=device,
  44. )
  45. def restore_with_face_helper(
  46. np_image: np.ndarray,
  47. face_helper: FaceRestoreHelper,
  48. restore_face: Callable[[torch.Tensor], torch.Tensor],
  49. ) -> np.ndarray:
  50. """
  51. Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image.
  52. `restore_face` should take a cropped face image and return a restored face image.
  53. """
  54. from torchvision.transforms.functional import normalize
  55. np_image = np_image[:, :, ::-1]
  56. original_resolution = np_image.shape[0:2]
  57. try:
  58. logger.debug("Detecting faces...")
  59. face_helper.clean_all()
  60. face_helper.read_image(np_image)
  61. face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
  62. face_helper.align_warp_face()
  63. logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
  64. for cropped_face in face_helper.cropped_faces:
  65. cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
  66. normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
  67. cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
  68. try:
  69. with torch.no_grad():
  70. cropped_face_t = restore_face(cropped_face_t)
  71. devices.torch_gc()
  72. except Exception:
  73. errors.report('Failed face-restoration inference', exc_info=True)
  74. restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
  75. restored_face = (restored_face * 255.0).astype('uint8')
  76. face_helper.add_restored_face(restored_face)
  77. logger.debug("Merging restored faces into image")
  78. face_helper.get_inverse_affine(None)
  79. img = face_helper.paste_faces_to_input_image()
  80. img = img[:, :, ::-1]
  81. if original_resolution != img.shape[0:2]:
  82. img = cv2.resize(
  83. img,
  84. (0, 0),
  85. fx=original_resolution[1] / img.shape[1],
  86. fy=original_resolution[0] / img.shape[0],
  87. interpolation=cv2.INTER_LINEAR,
  88. )
  89. logger.debug("Face restoration complete")
  90. finally:
  91. face_helper.clean_all()
  92. return img
  93. class CommonFaceRestoration(face_restoration.FaceRestoration):
  94. net: torch.Module | None
  95. model_url: str
  96. model_download_name: str
  97. def __init__(self, model_path: str):
  98. super().__init__()
  99. self.net = None
  100. self.model_path = model_path
  101. os.makedirs(model_path, exist_ok=True)
  102. @cached_property
  103. def face_helper(self) -> FaceRestoreHelper:
  104. return create_face_helper(self.get_device())
  105. def send_model_to(self, device):
  106. if self.net:
  107. logger.debug("Sending %s to %s", self.net, device)
  108. self.net.to(device)
  109. if self.face_helper:
  110. logger.debug("Sending face helper to %s", device)
  111. self.face_helper.face_det.to(device)
  112. self.face_helper.face_parse.to(device)
  113. def get_device(self):
  114. raise NotImplementedError("get_device must be implemented by subclasses")
  115. def load_net(self) -> torch.Module:
  116. raise NotImplementedError("load_net must be implemented by subclasses")
  117. def restore_with_helper(
  118. self,
  119. np_image: np.ndarray,
  120. restore_face: Callable[[torch.Tensor], torch.Tensor],
  121. ) -> np.ndarray:
  122. try:
  123. if self.net is None:
  124. self.net = self.load_net()
  125. except Exception:
  126. logger.warning("Unable to load face-restoration model", exc_info=True)
  127. return np_image
  128. try:
  129. self.send_model_to(self.get_device())
  130. return restore_with_face_helper(np_image, self.face_helper, restore_face)
  131. finally:
  132. if shared.opts.face_restoration_unload:
  133. self.send_model_to(devices.cpu)
  134. def patch_facexlib(dirname: str) -> None:
  135. import facexlib.detection
  136. import facexlib.parsing
  137. det_facex_load_file_from_url = facexlib.detection.load_file_from_url
  138. par_facex_load_file_from_url = facexlib.parsing.load_file_from_url
  139. def update_kwargs(kwargs):
  140. return dict(kwargs, save_dir=dirname, model_dir=None)
  141. def facex_load_file_from_url(**kwargs):
  142. return det_facex_load_file_from_url(**update_kwargs(kwargs))
  143. def facex_load_file_from_url2(**kwargs):
  144. return par_facex_load_file_from_url(**update_kwargs(kwargs))
  145. facexlib.detection.load_file_from_url = facex_load_file_from_url
  146. facexlib.parsing.load_file_from_url = facex_load_file_from_url2