12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import os
- import torch
- from torch import nn
- from modules import devices, paths
- sd_vae_approx_model = None
- class VAEApprox(nn.Module):
- def __init__(self):
- super(VAEApprox, self).__init__()
- self.conv1 = nn.Conv2d(4, 8, (7, 7))
- self.conv2 = nn.Conv2d(8, 16, (5, 5))
- self.conv3 = nn.Conv2d(16, 32, (3, 3))
- self.conv4 = nn.Conv2d(32, 64, (3, 3))
- self.conv5 = nn.Conv2d(64, 32, (3, 3))
- self.conv6 = nn.Conv2d(32, 16, (3, 3))
- self.conv7 = nn.Conv2d(16, 8, (3, 3))
- self.conv8 = nn.Conv2d(8, 3, (3, 3))
- def forward(self, x):
- extra = 11
- x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
- x = nn.functional.pad(x, (extra, extra, extra, extra))
- for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
- x = layer(x)
- x = nn.functional.leaky_relu(x, 0.1)
- return x
- def model():
- global sd_vae_approx_model
- if sd_vae_approx_model is None:
- model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
- sd_vae_approx_model = VAEApprox()
- if not os.path.exists(model_path):
- model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt")
- sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
- sd_vae_approx_model.eval()
- sd_vae_approx_model.to(devices.device, devices.dtype)
- return sd_vae_approx_model
- def cheap_approximation(sample):
- # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
- coefs = torch.tensor([
- [0.298, 0.207, 0.208],
- [0.187, 0.286, 0.173],
- [-0.158, 0.189, 0.264],
- [-0.184, -0.271, -0.473],
- ]).to(sample.device)
- x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
- return x_sample
|