sd_models_config.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. import os
  2. import torch
  3. from modules import shared, paths, sd_disable_initialization
  4. sd_configs_path = shared.sd_configs_path
  5. sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
  6. config_default = shared.sd_default_config
  7. config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
  8. config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
  9. config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
  10. config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
  11. config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
  12. config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
  13. config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
  14. config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
  15. config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
  16. def is_using_v_parameterization_for_sd2(state_dict):
  17. """
  18. Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
  19. """
  20. import ldm.modules.diffusionmodules.openaimodel
  21. from modules import devices
  22. device = devices.cpu
  23. with sd_disable_initialization.DisableInitialization():
  24. unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
  25. use_checkpoint=True,
  26. use_fp16=False,
  27. image_size=32,
  28. in_channels=4,
  29. out_channels=4,
  30. model_channels=320,
  31. attention_resolutions=[4, 2, 1],
  32. num_res_blocks=2,
  33. channel_mult=[1, 2, 4, 4],
  34. num_head_channels=64,
  35. use_spatial_transformer=True,
  36. use_linear_in_transformer=True,
  37. transformer_depth=1,
  38. context_dim=1024,
  39. legacy=False
  40. )
  41. unet.eval()
  42. with torch.no_grad():
  43. unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
  44. unet.load_state_dict(unet_sd, strict=True)
  45. unet.to(device=device, dtype=torch.float)
  46. test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
  47. x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
  48. out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
  49. return out < -1
  50. def guess_model_config_from_state_dict(sd, filename):
  51. sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
  52. diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
  53. sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
  54. if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
  55. return config_depth_model
  56. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
  57. return config_unclip
  58. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
  59. return config_unopenclip
  60. if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
  61. if diffusion_model_input.shape[1] == 9:
  62. return config_sd2_inpainting
  63. elif is_using_v_parameterization_for_sd2(sd):
  64. return config_sd2v
  65. else:
  66. return config_sd2
  67. if diffusion_model_input is not None:
  68. if diffusion_model_input.shape[1] == 9:
  69. return config_inpainting
  70. if diffusion_model_input.shape[1] == 8:
  71. return config_instruct_pix2pix
  72. if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
  73. return config_alt_diffusion
  74. return config_default
  75. def find_checkpoint_config(state_dict, info):
  76. if info is None:
  77. return guess_model_config_from_state_dict(state_dict, "")
  78. config = find_checkpoint_config_near_filename(info)
  79. if config is not None:
  80. return config
  81. return guess_model_config_from_state_dict(state_dict, info.filename)
  82. def find_checkpoint_config_near_filename(info):
  83. if info is None:
  84. return None
  85. config = f"{os.path.splitext(info.filename)[0]}.yaml"
  86. if os.path.exists(config):
  87. return config
  88. return None