api.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. import base64
  2. import io
  3. import time
  4. import datetime
  5. import uvicorn
  6. import gradio as gr
  7. from threading import Lock
  8. from io import BytesIO
  9. from fastapi import APIRouter, Depends, FastAPI, Request, Response
  10. from fastapi.security import HTTPBasic, HTTPBasicCredentials
  11. from fastapi.exceptions import HTTPException
  12. from fastapi.responses import JSONResponse
  13. from fastapi.encoders import jsonable_encoder
  14. from secrets import compare_digest
  15. import modules.shared as shared
  16. from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors
  17. from modules.api import models
  18. from modules.shared import opts
  19. from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
  20. from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
  21. from modules.textual_inversion.preprocess import preprocess
  22. from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
  23. from PIL import PngImagePlugin,Image
  24. from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights
  25. from modules.sd_vae import vae_dict
  26. from modules.sd_models_config import find_checkpoint_config_near_filename
  27. from modules.realesrgan_model import get_realesrgan_models
  28. from modules import devices
  29. from typing import Dict, List, Any
  30. import piexif
  31. import piexif.helper
  32. def upscaler_to_index(name: str):
  33. try:
  34. return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
  35. except Exception as e:
  36. raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
  37. def script_name_to_index(name, scripts):
  38. try:
  39. return [script.title().lower() for script in scripts].index(name.lower())
  40. except Exception as e:
  41. raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e
  42. def validate_sampler_name(name):
  43. config = sd_samplers.all_samplers_map.get(name, None)
  44. if config is None:
  45. raise HTTPException(status_code=404, detail="Sampler not found")
  46. return name
  47. def setUpscalers(req: dict):
  48. reqDict = vars(req)
  49. reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
  50. reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
  51. return reqDict
  52. def decode_base64_to_image(encoding):
  53. if encoding.startswith("data:image/"):
  54. encoding = encoding.split(";")[1].split(",")[1]
  55. try:
  56. image = Image.open(BytesIO(base64.b64decode(encoding)))
  57. return image
  58. except Exception as e:
  59. raise HTTPException(status_code=500, detail="Invalid encoded image") from e
  60. def encode_pil_to_base64(image):
  61. with io.BytesIO() as output_bytes:
  62. if opts.samples_format.lower() == 'png':
  63. use_metadata = False
  64. metadata = PngImagePlugin.PngInfo()
  65. for key, value in image.info.items():
  66. if isinstance(key, str) and isinstance(value, str):
  67. metadata.add_text(key, value)
  68. use_metadata = True
  69. image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
  70. elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
  71. parameters = image.info.get('parameters', None)
  72. exif_bytes = piexif.dump({
  73. "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
  74. })
  75. if opts.samples_format.lower() in ("jpg", "jpeg"):
  76. image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
  77. else:
  78. image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
  79. else:
  80. raise HTTPException(status_code=500, detail="Invalid image format")
  81. bytes_data = output_bytes.getvalue()
  82. return base64.b64encode(bytes_data)
  83. def api_middleware(app: FastAPI):
  84. rich_available = True
  85. try:
  86. import anyio # importing just so it can be placed on silent list
  87. import starlette # importing just so it can be placed on silent list
  88. from rich.console import Console
  89. console = Console()
  90. except Exception:
  91. rich_available = False
  92. @app.middleware("http")
  93. async def log_and_time(req: Request, call_next):
  94. ts = time.time()
  95. res: Response = await call_next(req)
  96. duration = str(round(time.time() - ts, 4))
  97. res.headers["X-Process-Time"] = duration
  98. endpoint = req.scope.get('path', 'err')
  99. if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
  100. print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
  101. t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
  102. code = res.status_code,
  103. ver = req.scope.get('http_version', '0.0'),
  104. cli = req.scope.get('client', ('0:0.0.0', 0))[0],
  105. prot = req.scope.get('scheme', 'err'),
  106. method = req.scope.get('method', 'err'),
  107. endpoint = endpoint,
  108. duration = duration,
  109. ))
  110. return res
  111. def handle_exception(request: Request, e: Exception):
  112. err = {
  113. "error": type(e).__name__,
  114. "detail": vars(e).get('detail', ''),
  115. "body": vars(e).get('body', ''),
  116. "errors": str(e),
  117. }
  118. if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
  119. message = f"API error: {request.method}: {request.url} {err}"
  120. if rich_available:
  121. print(message)
  122. console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
  123. else:
  124. errors.report(message, exc_info=True)
  125. return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
  126. @app.middleware("http")
  127. async def exception_handling(request: Request, call_next):
  128. try:
  129. return await call_next(request)
  130. except Exception as e:
  131. return handle_exception(request, e)
  132. @app.exception_handler(Exception)
  133. async def fastapi_exception_handler(request: Request, e: Exception):
  134. return handle_exception(request, e)
  135. @app.exception_handler(HTTPException)
  136. async def http_exception_handler(request: Request, e: HTTPException):
  137. return handle_exception(request, e)
  138. class Api:
  139. def __init__(self, app: FastAPI, queue_lock: Lock):
  140. if shared.cmd_opts.api_auth:
  141. self.credentials = {}
  142. for auth in shared.cmd_opts.api_auth.split(","):
  143. user, password = auth.split(":")
  144. self.credentials[user] = password
  145. self.router = APIRouter()
  146. self.app = app
  147. self.queue_lock = queue_lock
  148. api_middleware(self.app)
  149. self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse)
  150. self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse)
  151. self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse)
  152. self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse)
  153. self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse)
  154. self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse)
  155. self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
  156. self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
  157. self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
  158. self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel)
  159. self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
  160. self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
  161. self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
  162. self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
  163. self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem])
  164. self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
  165. self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
  166. self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
  167. self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
  168. self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
  169. self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
  170. self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
  171. self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
  172. self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
  173. self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
  174. self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
  175. self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
  176. self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
  177. self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
  178. self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
  179. self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
  180. self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
  181. self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
  182. self.default_script_arg_txt2img = []
  183. self.default_script_arg_img2img = []
  184. def add_api_route(self, path: str, endpoint, **kwargs):
  185. if shared.cmd_opts.api_auth:
  186. return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
  187. return self.app.add_api_route(path, endpoint, **kwargs)
  188. def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
  189. if credentials.username in self.credentials:
  190. if compare_digest(credentials.password, self.credentials[credentials.username]):
  191. return True
  192. raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
  193. def get_selectable_script(self, script_name, script_runner):
  194. if script_name is None or script_name == "":
  195. return None, None
  196. script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
  197. script = script_runner.selectable_scripts[script_idx]
  198. return script, script_idx
  199. def get_scripts_list(self):
  200. t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None]
  201. i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None]
  202. return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist)
  203. def get_script_info(self):
  204. res = []
  205. for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]:
  206. res += [script.api_info for script in script_list if script.api_info is not None]
  207. return res
  208. def get_script(self, script_name, script_runner):
  209. if script_name is None or script_name == "":
  210. return None, None
  211. script_idx = script_name_to_index(script_name, script_runner.scripts)
  212. return script_runner.scripts[script_idx]
  213. def init_default_script_args(self, script_runner):
  214. #find max idx from the scripts in runner and generate a none array to init script_args
  215. last_arg_index = 1
  216. for script in script_runner.scripts:
  217. if last_arg_index < script.args_to:
  218. last_arg_index = script.args_to
  219. # None everywhere except position 0 to initialize script args
  220. script_args = [None]*last_arg_index
  221. script_args[0] = 0
  222. # get default values
  223. with gr.Blocks(): # will throw errors calling ui function without this
  224. for script in script_runner.scripts:
  225. if script.ui(script.is_img2img):
  226. ui_default_values = []
  227. for elem in script.ui(script.is_img2img):
  228. ui_default_values.append(elem.value)
  229. script_args[script.args_from:script.args_to] = ui_default_values
  230. return script_args
  231. def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
  232. script_args = default_script_args.copy()
  233. # position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
  234. if selectable_scripts:
  235. script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
  236. script_args[0] = selectable_idx + 1
  237. # Now check for always on scripts
  238. if request.alwayson_scripts:
  239. for alwayson_script_name in request.alwayson_scripts.keys():
  240. alwayson_script = self.get_script(alwayson_script_name, script_runner)
  241. if alwayson_script is None:
  242. raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
  243. # Selectable script in always on script param check
  244. if alwayson_script.alwayson is False:
  245. raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params")
  246. # always on script with no arg should always run so you don't really need to add them to the requests
  247. if "args" in request.alwayson_scripts[alwayson_script_name]:
  248. # min between arg length in scriptrunner and arg length in the request
  249. for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
  250. script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
  251. return script_args
  252. def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
  253. script_runner = scripts.scripts_txt2img
  254. if not script_runner.scripts:
  255. script_runner.initialize_scripts(False)
  256. ui.create_ui()
  257. if not self.default_script_arg_txt2img:
  258. self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
  259. selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
  260. populate = txt2imgreq.copy(update={ # Override __init__ params
  261. "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
  262. "do_not_save_samples": not txt2imgreq.save_images,
  263. "do_not_save_grid": not txt2imgreq.save_images,
  264. })
  265. if populate.sampler_name:
  266. populate.sampler_index = None # prevent a warning later on
  267. args = vars(populate)
  268. args.pop('script_name', None)
  269. args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
  270. args.pop('alwayson_scripts', None)
  271. script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)
  272. send_images = args.pop('send_images', True)
  273. args.pop('save_images', None)
  274. with self.queue_lock:
  275. p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
  276. p.scripts = script_runner
  277. p.outpath_grids = opts.outdir_txt2img_grids
  278. p.outpath_samples = opts.outdir_txt2img_samples
  279. shared.state.begin()
  280. if selectable_scripts is not None:
  281. p.script_args = script_args
  282. processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
  283. else:
  284. p.script_args = tuple(script_args) # Need to pass args as tuple here
  285. processed = process_images(p)
  286. shared.state.end()
  287. b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
  288. return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
  289. def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
  290. init_images = img2imgreq.init_images
  291. if init_images is None:
  292. raise HTTPException(status_code=404, detail="Init image not found")
  293. mask = img2imgreq.mask
  294. if mask:
  295. mask = decode_base64_to_image(mask)
  296. script_runner = scripts.scripts_img2img
  297. if not script_runner.scripts:
  298. script_runner.initialize_scripts(True)
  299. ui.create_ui()
  300. if not self.default_script_arg_img2img:
  301. self.default_script_arg_img2img = self.init_default_script_args(script_runner)
  302. selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
  303. populate = img2imgreq.copy(update={ # Override __init__ params
  304. "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
  305. "do_not_save_samples": not img2imgreq.save_images,
  306. "do_not_save_grid": not img2imgreq.save_images,
  307. "mask": mask,
  308. })
  309. if populate.sampler_name:
  310. populate.sampler_index = None # prevent a warning later on
  311. args = vars(populate)
  312. args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
  313. args.pop('script_name', None)
  314. args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
  315. args.pop('alwayson_scripts', None)
  316. script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)
  317. send_images = args.pop('send_images', True)
  318. args.pop('save_images', None)
  319. with self.queue_lock:
  320. p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
  321. p.init_images = [decode_base64_to_image(x) for x in init_images]
  322. p.scripts = script_runner
  323. p.outpath_grids = opts.outdir_img2img_grids
  324. p.outpath_samples = opts.outdir_img2img_samples
  325. shared.state.begin()
  326. if selectable_scripts is not None:
  327. p.script_args = script_args
  328. processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
  329. else:
  330. p.script_args = tuple(script_args) # Need to pass args as tuple here
  331. processed = process_images(p)
  332. shared.state.end()
  333. b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
  334. if not img2imgreq.include_init_images:
  335. img2imgreq.init_images = None
  336. img2imgreq.mask = None
  337. return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
  338. def extras_single_image_api(self, req: models.ExtrasSingleImageRequest):
  339. reqDict = setUpscalers(req)
  340. reqDict['image'] = decode_base64_to_image(reqDict['image'])
  341. with self.queue_lock:
  342. result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
  343. return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
  344. def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest):
  345. reqDict = setUpscalers(req)
  346. image_list = reqDict.pop('imageList', [])
  347. image_folder = [decode_base64_to_image(x.data) for x in image_list]
  348. with self.queue_lock:
  349. result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
  350. return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
  351. def pnginfoapi(self, req: models.PNGInfoRequest):
  352. if(not req.image.strip()):
  353. return models.PNGInfoResponse(info="")
  354. image = decode_base64_to_image(req.image.strip())
  355. if image is None:
  356. return models.PNGInfoResponse(info="")
  357. geninfo, items = images.read_info_from_image(image)
  358. if geninfo is None:
  359. geninfo = ""
  360. items = {**{'parameters': geninfo}, **items}
  361. return models.PNGInfoResponse(info=geninfo, items=items)
  362. def progressapi(self, req: models.ProgressRequest = Depends()):
  363. # copy from check_progress_call of ui.py
  364. if shared.state.job_count == 0:
  365. return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
  366. # avoid dividing zero
  367. progress = 0.01
  368. if shared.state.job_count > 0:
  369. progress += shared.state.job_no / shared.state.job_count
  370. if shared.state.sampling_steps > 0:
  371. progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
  372. time_since_start = time.time() - shared.state.time_start
  373. eta = (time_since_start/progress)
  374. eta_relative = eta-time_since_start
  375. progress = min(progress, 1)
  376. shared.state.set_current_image()
  377. current_image = None
  378. if shared.state.current_image and not req.skip_current_image:
  379. current_image = encode_pil_to_base64(shared.state.current_image)
  380. return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
  381. def interrogateapi(self, interrogatereq: models.InterrogateRequest):
  382. image_b64 = interrogatereq.image
  383. if image_b64 is None:
  384. raise HTTPException(status_code=404, detail="Image not found")
  385. img = decode_base64_to_image(image_b64)
  386. img = img.convert('RGB')
  387. # Override object param
  388. with self.queue_lock:
  389. if interrogatereq.model == "clip":
  390. processed = shared.interrogator.interrogate(img)
  391. elif interrogatereq.model == "deepdanbooru":
  392. processed = deepbooru.model.tag(img)
  393. else:
  394. raise HTTPException(status_code=404, detail="Model not found")
  395. return models.InterrogateResponse(caption=processed)
  396. def interruptapi(self):
  397. shared.state.interrupt()
  398. return {}
  399. def unloadapi(self):
  400. unload_model_weights()
  401. return {}
  402. def reloadapi(self):
  403. reload_model_weights()
  404. return {}
  405. def skip(self):
  406. shared.state.skip()
  407. def get_config(self):
  408. options = {}
  409. for key in shared.opts.data.keys():
  410. metadata = shared.opts.data_labels.get(key)
  411. if(metadata is not None):
  412. options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
  413. else:
  414. options.update({key: shared.opts.data.get(key, None)})
  415. return options
  416. def set_config(self, req: Dict[str, Any]):
  417. for k, v in req.items():
  418. shared.opts.set(k, v)
  419. shared.opts.save(shared.config_filename)
  420. return
  421. def get_cmd_flags(self):
  422. return vars(shared.cmd_opts)
  423. def get_samplers(self):
  424. return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
  425. def get_upscalers(self):
  426. return [
  427. {
  428. "name": upscaler.name,
  429. "model_name": upscaler.scaler.model_name,
  430. "model_path": upscaler.data_path,
  431. "model_url": None,
  432. "scale": upscaler.scale,
  433. }
  434. for upscaler in shared.sd_upscalers
  435. ]
  436. def get_latent_upscale_modes(self):
  437. return [
  438. {
  439. "name": upscale_mode,
  440. }
  441. for upscale_mode in [*(shared.latent_upscale_modes or {})]
  442. ]
  443. def get_sd_models(self):
  444. return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
  445. def get_sd_vaes(self):
  446. return [{"model_name": x, "filename": vae_dict[x]} for x in vae_dict.keys()]
  447. def get_hypernetworks(self):
  448. return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
  449. def get_face_restorers(self):
  450. return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
  451. def get_realesrgan_models(self):
  452. return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
  453. def get_prompt_styles(self):
  454. styleList = []
  455. for k in shared.prompt_styles.styles:
  456. style = shared.prompt_styles.styles[k]
  457. styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
  458. return styleList
  459. def get_embeddings(self):
  460. db = sd_hijack.model_hijack.embedding_db
  461. def convert_embedding(embedding):
  462. return {
  463. "step": embedding.step,
  464. "sd_checkpoint": embedding.sd_checkpoint,
  465. "sd_checkpoint_name": embedding.sd_checkpoint_name,
  466. "shape": embedding.shape,
  467. "vectors": embedding.vectors,
  468. }
  469. def convert_embeddings(embeddings):
  470. return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
  471. return {
  472. "loaded": convert_embeddings(db.word_embeddings),
  473. "skipped": convert_embeddings(db.skipped_embeddings),
  474. }
  475. def refresh_checkpoints(self):
  476. shared.refresh_checkpoints()
  477. def create_embedding(self, args: dict):
  478. try:
  479. shared.state.begin()
  480. filename = create_embedding(**args) # create empty embedding
  481. sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
  482. shared.state.end()
  483. return models.CreateResponse(info=f"create embedding filename: {filename}")
  484. except AssertionError as e:
  485. shared.state.end()
  486. return models.TrainResponse(info=f"create embedding error: {e}")
  487. def create_hypernetwork(self, args: dict):
  488. try:
  489. shared.state.begin()
  490. filename = create_hypernetwork(**args) # create empty embedding
  491. shared.state.end()
  492. return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
  493. except AssertionError as e:
  494. shared.state.end()
  495. return models.TrainResponse(info=f"create hypernetwork error: {e}")
  496. def preprocess(self, args: dict):
  497. try:
  498. shared.state.begin()
  499. preprocess(**args) # quick operation unless blip/booru interrogation is enabled
  500. shared.state.end()
  501. return models.PreprocessResponse(info = 'preprocess complete')
  502. except KeyError as e:
  503. shared.state.end()
  504. return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
  505. except AssertionError as e:
  506. shared.state.end()
  507. return models.PreprocessResponse(info=f"preprocess error: {e}")
  508. except FileNotFoundError as e:
  509. shared.state.end()
  510. return models.PreprocessResponse(info=f'preprocess error: {e}')
  511. def train_embedding(self, args: dict):
  512. try:
  513. shared.state.begin()
  514. apply_optimizations = shared.opts.training_xattention_optimizations
  515. error = None
  516. filename = ''
  517. if not apply_optimizations:
  518. sd_hijack.undo_optimizations()
  519. try:
  520. embedding, filename = train_embedding(**args) # can take a long time to complete
  521. except Exception as e:
  522. error = e
  523. finally:
  524. if not apply_optimizations:
  525. sd_hijack.apply_optimizations()
  526. shared.state.end()
  527. return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
  528. except AssertionError as msg:
  529. shared.state.end()
  530. return models.TrainResponse(info=f"train embedding error: {msg}")
  531. def train_hypernetwork(self, args: dict):
  532. try:
  533. shared.state.begin()
  534. shared.loaded_hypernetworks = []
  535. apply_optimizations = shared.opts.training_xattention_optimizations
  536. error = None
  537. filename = ''
  538. if not apply_optimizations:
  539. sd_hijack.undo_optimizations()
  540. try:
  541. hypernetwork, filename = train_hypernetwork(**args)
  542. except Exception as e:
  543. error = e
  544. finally:
  545. shared.sd_model.cond_stage_model.to(devices.device)
  546. shared.sd_model.first_stage_model.to(devices.device)
  547. if not apply_optimizations:
  548. sd_hijack.apply_optimizations()
  549. shared.state.end()
  550. return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
  551. except AssertionError:
  552. shared.state.end()
  553. return models.TrainResponse(info=f"train embedding error: {error}")
  554. def get_memory(self):
  555. try:
  556. import os
  557. import psutil
  558. process = psutil.Process(os.getpid())
  559. res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
  560. ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
  561. ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
  562. except Exception as err:
  563. ram = { 'error': f'{err}' }
  564. try:
  565. import torch
  566. if torch.cuda.is_available():
  567. s = torch.cuda.mem_get_info()
  568. system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
  569. s = dict(torch.cuda.memory_stats(shared.device))
  570. allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
  571. reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
  572. active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
  573. inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
  574. warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
  575. cuda = {
  576. 'system': system,
  577. 'active': active,
  578. 'allocated': allocated,
  579. 'reserved': reserved,
  580. 'inactive': inactive,
  581. 'events': warnings,
  582. }
  583. else:
  584. cuda = {'error': 'unavailable'}
  585. except Exception as err:
  586. cuda = {'error': f'{err}'}
  587. return models.MemoryResponse(ram=ram, cuda=cuda)
  588. def launch(self, server_name, port):
  589. self.app.include_router(self.router)
  590. uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)