123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- import re
- import torch
- import gradio as gr
- from fastapi import FastAPI
- import lora
- import extra_networks_lora
- import ui_extra_networks_lora
- from modules import script_callbacks, ui_extra_networks, extra_networks, shared
- def unload():
- torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
- torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
- torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
- torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
- torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
- torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
- def before_ui():
- ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
- extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
- if not hasattr(torch.nn, 'Linear_forward_before_lora'):
- torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
- if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
- torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
- if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
- torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
- if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
- torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
- if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
- torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
- if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
- torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
- torch.nn.Linear.forward = lora.lora_Linear_forward
- torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
- torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
- torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
- torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
- torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
- script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
- script_callbacks.on_script_unloaded(unload)
- script_callbacks.on_before_ui(before_ui)
- script_callbacks.on_infotext_pasted(lora.infotext_pasted)
- shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
- "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
- "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
- "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
- }))
- shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
- "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
- }))
- def create_lora_json(obj: lora.LoraOnDisk):
- return {
- "name": obj.name,
- "alias": obj.alias,
- "path": obj.filename,
- "metadata": obj.metadata,
- }
- def api_loras(_: gr.Blocks, app: FastAPI):
- @app.get("/sdapi/v1/loras")
- async def get_loras():
- return [create_lora_json(obj) for obj in lora.available_loras.values()]
- @app.post("/sdapi/v1/refresh-loras")
- async def refresh_loras():
- return lora.list_available_loras()
- script_callbacks.on_app_started(api_loras)
- re_lora = re.compile("<lora:([^:]+):")
- def infotext_pasted(infotext, d):
- hashes = d.get("Lora hashes")
- if not hashes:
- return
- hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
- hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
- def lora_replacement(m):
- alias = m.group(1)
- shorthash = hashes.get(alias)
- if shorthash is None:
- return m.group(0)
- lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
- if lora_on_disk is None:
- return m.group(0)
- return f'<lora:{lora_on_disk.get_alias()}:'
- d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])
- script_callbacks.on_infotext_pasted(infotext_pasted)
|