123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import os
- import torch
- from torch import nn
- from modules import devices, paths, shared
- sd_vae_approx_models = {}
- class VAEApprox(nn.Module):
- def __init__(self, latent_channels=4):
- super(VAEApprox, self).__init__()
- self.conv1 = nn.Conv2d(latent_channels, 8, (7, 7))
- self.conv2 = nn.Conv2d(8, 16, (5, 5))
- self.conv3 = nn.Conv2d(16, 32, (3, 3))
- self.conv4 = nn.Conv2d(32, 64, (3, 3))
- self.conv5 = nn.Conv2d(64, 32, (3, 3))
- self.conv6 = nn.Conv2d(32, 16, (3, 3))
- self.conv7 = nn.Conv2d(16, 8, (3, 3))
- self.conv8 = nn.Conv2d(8, 3, (3, 3))
- def forward(self, x):
- extra = 11
- x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
- x = nn.functional.pad(x, (extra, extra, extra, extra))
- for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
- x = layer(x)
- x = nn.functional.leaky_relu(x, 0.1)
- return x
- def download_model(model_path, model_url):
- if not os.path.exists(model_path):
- os.makedirs(os.path.dirname(model_path), exist_ok=True)
- print(f'Downloading VAEApprox model to: {model_path}')
- torch.hub.download_url_to_file(model_url, model_path)
- def model():
- if shared.sd_model.is_sd3:
- model_name = "vaeapprox-sd3.pt"
- elif shared.sd_model.is_sdxl:
- model_name = "vaeapprox-sdxl.pt"
- else:
- model_name = "model.pt"
- loaded_model = sd_vae_approx_models.get(model_name)
- if loaded_model is None:
- model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
- if not os.path.exists(model_path):
- model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name)
- if not os.path.exists(model_path):
- model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
- download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
- loaded_model = VAEApprox(latent_channels=shared.sd_model.latent_channels)
- loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
- loaded_model.eval()
- loaded_model.to(devices.device, devices.dtype)
- sd_vae_approx_models[model_name] = loaded_model
- return loaded_model
- def cheap_approximation(sample):
- # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
- if shared.sd_model.is_sd3:
- coeffs = [
- [-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
- [ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
- [ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
- [ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
- [-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
- [ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
- [ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
- [-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259],
- ]
- elif shared.sd_model.is_sdxl:
- coeffs = [
- [ 0.3448, 0.4168, 0.4395],
- [-0.1953, -0.0290, 0.0250],
- [ 0.1074, 0.0886, -0.0163],
- [-0.3730, -0.2499, -0.2088],
- ]
- else:
- coeffs = [
- [ 0.298, 0.207, 0.208],
- [ 0.187, 0.286, 0.173],
- [-0.158, 0.189, 0.264],
- [-0.184, -0.271, -0.473],
- ]
- coefs = torch.tensor(coeffs).to(sample.device)
- x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
- return x_sample
|