123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- import contextlib
- import torch
- import k_diffusion
- from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat
- from modules.models.sd3.sd3_cond import SD3Cond
- from modules import shared, devices
- class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
- def __init__(self, inner_model, sigmas):
- super().__init__(sigmas, quantize=shared.opts.enable_quantization)
- self.inner_model = inner_model
- def forward(self, input, sigma, **kwargs):
- return self.inner_model.apply_model(input, sigma, **kwargs)
- class SD3Inferencer(torch.nn.Module):
- def __init__(self, state_dict, shift=3, use_ema=False):
- super().__init__()
- self.shift = shift
- with torch.no_grad():
- self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype)
- self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae)
- self.first_stage_model.dtype = self.model.diffusion_model.dtype
- self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1)
- self.text_encoders = SD3Cond()
- self.cond_stage_key = 'txt'
- self.parameterization = "eps"
- self.model.conditioning_key = "crossattn"
- self.latent_format = SD3LatentFormat()
- self.latent_channels = 16
- @property
- def cond_stage_model(self):
- return self.text_encoders
- def before_load_weights(self, state_dict):
- self.cond_stage_model.before_load_weights(state_dict)
- def ema_scope(self):
- return contextlib.nullcontext()
- def get_learned_conditioning(self, batch: list[str]):
- return self.cond_stage_model(batch)
- def apply_model(self, x, t, cond):
- return self.model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
- def decode_first_stage(self, latent):
- latent = self.latent_format.process_out(latent)
- return self.first_stage_model.decode(latent)
- def encode_first_stage(self, image):
- latent = self.first_stage_model.encode(image)
- return self.latent_format.process_in(latent)
- def get_first_stage_encoding(self, x):
- return x
- def create_denoiser(self):
- return SD3Denoiser(self, self.model.model_sampling.sigmas)
- def medvram_fields(self):
- return [
- (self, 'first_stage_model'),
- (self, 'text_encoders'),
- (self, 'model'),
- ]
- def add_noise_to_latent(self, x, noise, amount):
- return x * (1 - amount) + noise * amount
- def fix_dimensions(self, width, height):
- return width // 16 * 16, height // 16 * 16
- def diffusers_weight_mapping(self):
- for i in range(self.model.depth):
- yield f"transformer.transformer_blocks.{i}.attn.to_q", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_q_proj"
- yield f"transformer.transformer_blocks.{i}.attn.to_k", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_k_proj"
- yield f"transformer.transformer_blocks.{i}.attn.to_v", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_v_proj"
- yield f"transformer.transformer_blocks.{i}.attn.to_out.0", f"diffusion_model_joint_blocks_{i}_x_block_attn_proj"
- yield f"transformer.transformer_blocks.{i}.attn.add_q_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_q_proj"
- yield f"transformer.transformer_blocks.{i}.attn.add_k_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_k_proj"
- yield f"transformer.transformer_blocks.{i}.attn.add_v_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_v_proj"
- yield f"transformer.transformer_blocks.{i}.attn.add_out_proj.0", f"diffusion_model_joint_blocks_{i}_context_block_attn_proj"
|