123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import torch
- import network
- from einops import rearrange
- class ModuleTypeOFT(network.ModuleType):
- def create_module(self, net: network.Network, weights: network.NetworkWeights):
- if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
- return NetworkModuleOFT(net, weights)
- return None
- # Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
- # and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
- class NetworkModuleOFT(network.NetworkModule):
- def __init__(self, net: network.Network, weights: network.NetworkWeights):
- super().__init__(net, weights)
- self.lin_module = None
- self.org_module: list[torch.Module] = [self.sd_module]
- self.scale = 1.0
- self.is_R = False
- self.is_boft = False
- # kohya-ss/New LyCORIS OFT/BOFT
- if "oft_blocks" in weights.w.keys():
- self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
- self.alpha = weights.w.get("alpha", None) # alpha is constraint
- self.dim = self.oft_blocks.shape[0] # lora dim
- # Old LyCORIS OFT
- elif "oft_diag" in weights.w.keys():
- self.is_R = True
- self.oft_blocks = weights.w["oft_diag"]
- # self.alpha is unused
- self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
- is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
- is_conv = type(self.sd_module) in [torch.nn.Conv2d]
- is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
- if is_linear:
- self.out_dim = self.sd_module.out_features
- elif is_conv:
- self.out_dim = self.sd_module.out_channels
- elif is_other_linear:
- self.out_dim = self.sd_module.embed_dim
- # LyCORIS BOFT
- if self.oft_blocks.dim() == 4:
- self.is_boft = True
- self.rescale = weights.w.get('rescale', None)
- if self.rescale is not None and not is_other_linear:
- self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
- self.num_blocks = self.dim
- self.block_size = self.out_dim // self.dim
- self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
- if self.is_R:
- self.constraint = None
- self.block_size = self.dim
- self.num_blocks = self.out_dim // self.dim
- elif self.is_boft:
- self.boft_m = self.oft_blocks.shape[0]
- self.num_blocks = self.oft_blocks.shape[1]
- self.block_size = self.oft_blocks.shape[2]
- self.boft_b = self.block_size
- def calc_updown(self, orig_weight):
- oft_blocks = self.oft_blocks.to(orig_weight.device)
- eye = torch.eye(self.block_size, device=oft_blocks.device)
- if not self.is_R:
- block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix
- if self.constraint != 0:
- norm_Q = torch.norm(block_Q.flatten())
- new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
- block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
- oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
- R = oft_blocks.to(orig_weight.device)
- if not self.is_boft:
- # This errors out for MultiheadAttention, might need to be handled up-stream
- merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
- merged_weight = torch.einsum(
- 'k n m, k n ... -> k m ...',
- R,
- merged_weight
- )
- merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
- else:
- # TODO: determine correct value for scale
- scale = 1.0
- m = self.boft_m
- b = self.boft_b
- r_b = b // 2
- inp = orig_weight
- for i in range(m):
- bi = R[i] # b_num, b_size, b_size
- if i == 0:
- # Apply multiplier/scale and rescale into first weight
- bi = bi * scale + (1 - scale) * eye
- inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
- inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
- inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
- inp = rearrange(inp, "d b ... -> (d b) ...")
- inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
- merged_weight = inp
- # Rescale mechanism
- if self.rescale is not None:
- merged_weight = self.rescale.to(merged_weight) * merged_weight
- updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
- output_shape = orig_weight.shape
- return self.finalize_updown(updown, orig_weight, output_shape)
|