textual_inversion.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. import os
  2. from collections import namedtuple
  3. from contextlib import closing
  4. import torch
  5. import tqdm
  6. import html
  7. import datetime
  8. import csv
  9. import safetensors.torch
  10. import numpy as np
  11. from PIL import Image, PngImagePlugin
  12. from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
  13. import modules.textual_inversion.dataset
  14. from modules.textual_inversion.learn_schedule import LearnRateScheduler
  15. from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
  16. from modules.textual_inversion.saving_settings import save_settings_to_file
  17. TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
  18. textual_inversion_templates = {}
  19. def list_textual_inversion_templates():
  20. textual_inversion_templates.clear()
  21. for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
  22. for fn in fns:
  23. path = os.path.join(root, fn)
  24. textual_inversion_templates[fn] = TextualInversionTemplate(fn, path)
  25. return textual_inversion_templates
  26. class Embedding:
  27. def __init__(self, vec, name, step=None):
  28. self.vec = vec
  29. self.name = name
  30. self.step = step
  31. self.shape = None
  32. self.vectors = 0
  33. self.cached_checksum = None
  34. self.sd_checkpoint = None
  35. self.sd_checkpoint_name = None
  36. self.optimizer_state_dict = None
  37. self.filename = None
  38. self.hash = None
  39. self.shorthash = None
  40. def save(self, filename):
  41. embedding_data = {
  42. "string_to_token": {"*": 265},
  43. "string_to_param": {"*": self.vec},
  44. "name": self.name,
  45. "step": self.step,
  46. "sd_checkpoint": self.sd_checkpoint,
  47. "sd_checkpoint_name": self.sd_checkpoint_name,
  48. }
  49. torch.save(embedding_data, filename)
  50. if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
  51. optimizer_saved_dict = {
  52. 'hash': self.checksum(),
  53. 'optimizer_state_dict': self.optimizer_state_dict,
  54. }
  55. torch.save(optimizer_saved_dict, f"{filename}.optim")
  56. def checksum(self):
  57. if self.cached_checksum is not None:
  58. return self.cached_checksum
  59. def const_hash(a):
  60. r = 0
  61. for v in a:
  62. r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
  63. return r
  64. self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
  65. return self.cached_checksum
  66. def set_hash(self, v):
  67. self.hash = v
  68. self.shorthash = self.hash[0:12]
  69. class DirWithTextualInversionEmbeddings:
  70. def __init__(self, path):
  71. self.path = path
  72. self.mtime = None
  73. def has_changed(self):
  74. if not os.path.isdir(self.path):
  75. return False
  76. mt = os.path.getmtime(self.path)
  77. if self.mtime is None or mt > self.mtime:
  78. return True
  79. def update(self):
  80. if not os.path.isdir(self.path):
  81. return
  82. self.mtime = os.path.getmtime(self.path)
  83. class EmbeddingDatabase:
  84. def __init__(self):
  85. self.ids_lookup = {}
  86. self.word_embeddings = {}
  87. self.skipped_embeddings = {}
  88. self.expected_shape = -1
  89. self.embedding_dirs = {}
  90. self.previously_displayed_embeddings = ()
  91. def add_embedding_dir(self, path):
  92. self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
  93. def clear_embedding_dirs(self):
  94. self.embedding_dirs.clear()
  95. def register_embedding(self, embedding, model):
  96. return self.register_embedding_by_name(embedding, model, embedding.name)
  97. def register_embedding_by_name(self, embedding, model, name):
  98. ids = model.cond_stage_model.tokenize([name])[0]
  99. first_id = ids[0]
  100. if first_id not in self.ids_lookup:
  101. self.ids_lookup[first_id] = []
  102. if name in self.word_embeddings:
  103. # remove old one from the lookup list
  104. lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name]
  105. else:
  106. lookup = self.ids_lookup[first_id]
  107. if embedding is not None:
  108. lookup += [(ids, embedding)]
  109. self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
  110. if embedding is None:
  111. # unregister embedding with specified name
  112. if name in self.word_embeddings:
  113. del self.word_embeddings[name]
  114. if len(self.ids_lookup[first_id])==0:
  115. del self.ids_lookup[first_id]
  116. return None
  117. self.word_embeddings[name] = embedding
  118. return embedding
  119. def get_expected_shape(self):
  120. devices.torch_npu_set_device()
  121. vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
  122. return vec.shape[1]
  123. def load_from_file(self, path, filename):
  124. name, ext = os.path.splitext(filename)
  125. ext = ext.upper()
  126. if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
  127. _, second_ext = os.path.splitext(name)
  128. if second_ext.upper() == '.PREVIEW':
  129. return
  130. embed_image = Image.open(path)
  131. if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
  132. data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
  133. name = data.get('name', name)
  134. else:
  135. data = extract_image_data_embed(embed_image)
  136. if data:
  137. name = data.get('name', name)
  138. else:
  139. # if data is None, means this is not an embedding, just a preview image
  140. return
  141. elif ext in ['.BIN', '.PT']:
  142. data = torch.load(path, map_location="cpu")
  143. elif ext in ['.SAFETENSORS']:
  144. data = safetensors.torch.load_file(path, device="cpu")
  145. else:
  146. return
  147. embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
  148. if self.expected_shape == -1 or self.expected_shape == embedding.shape:
  149. self.register_embedding(embedding, shared.sd_model)
  150. else:
  151. self.skipped_embeddings[name] = embedding
  152. def load_from_dir(self, embdir):
  153. if not os.path.isdir(embdir.path):
  154. return
  155. for root, _, fns in os.walk(embdir.path, followlinks=True):
  156. for fn in fns:
  157. try:
  158. fullfn = os.path.join(root, fn)
  159. if os.stat(fullfn).st_size == 0:
  160. continue
  161. self.load_from_file(fullfn, fn)
  162. except Exception:
  163. errors.report(f"Error loading embedding {fn}", exc_info=True)
  164. continue
  165. def load_textual_inversion_embeddings(self, force_reload=False):
  166. if not force_reload:
  167. need_reload = False
  168. for embdir in self.embedding_dirs.values():
  169. if embdir.has_changed():
  170. need_reload = True
  171. break
  172. if not need_reload:
  173. return
  174. self.ids_lookup.clear()
  175. self.word_embeddings.clear()
  176. self.skipped_embeddings.clear()
  177. self.expected_shape = self.get_expected_shape()
  178. for embdir in self.embedding_dirs.values():
  179. self.load_from_dir(embdir)
  180. embdir.update()
  181. # re-sort word_embeddings because load_from_dir may not load in alphabetic order.
  182. # using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
  183. sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
  184. self.word_embeddings.clear()
  185. self.word_embeddings.update(sorted_word_embeddings)
  186. displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
  187. if shared.opts.textual_inversion_print_at_load and self.previously_displayed_embeddings != displayed_embeddings:
  188. self.previously_displayed_embeddings = displayed_embeddings
  189. print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
  190. if self.skipped_embeddings:
  191. print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
  192. def find_embedding_at_position(self, tokens, offset):
  193. token = tokens[offset]
  194. possible_matches = self.ids_lookup.get(token, None)
  195. if possible_matches is None:
  196. return None, None
  197. for ids, embedding in possible_matches:
  198. if tokens[offset:offset + len(ids)] == ids:
  199. return embedding, len(ids)
  200. return None, None
  201. def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
  202. cond_model = shared.sd_model.cond_stage_model
  203. with devices.autocast():
  204. cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
  205. #cond_model expects at least some text, so we provide '*' as backup.
  206. embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
  207. vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
  208. #Only copy if we provided an init_text, otherwise keep vectors as zeros
  209. if init_text:
  210. for i in range(num_vectors_per_token):
  211. vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
  212. # Remove illegal characters from name.
  213. name = "".join( x for x in name if (x.isalnum() or x in "._- "))
  214. fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
  215. if not overwrite_old:
  216. assert not os.path.exists(fn), f"file {fn} already exists"
  217. embedding = Embedding(vec, name)
  218. embedding.step = 0
  219. embedding.save(fn)
  220. return fn
  221. def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
  222. if 'string_to_param' in data: # textual inversion embeddings
  223. param_dict = data['string_to_param']
  224. param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
  225. assert len(param_dict) == 1, 'embedding file has multiple terms in it'
  226. emb = next(iter(param_dict.items()))[1]
  227. vec = emb.detach().to(devices.device, dtype=torch.float32)
  228. shape = vec.shape[-1]
  229. vectors = vec.shape[0]
  230. elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
  231. vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
  232. shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
  233. vectors = data['clip_g'].shape[0]
  234. elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
  235. assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
  236. emb = next(iter(data.values()))
  237. if len(emb.shape) == 1:
  238. emb = emb.unsqueeze(0)
  239. vec = emb.detach().to(devices.device, dtype=torch.float32)
  240. shape = vec.shape[-1]
  241. vectors = vec.shape[0]
  242. else:
  243. raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
  244. embedding = Embedding(vec, name)
  245. embedding.step = data.get('step', None)
  246. embedding.sd_checkpoint = data.get('sd_checkpoint', None)
  247. embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
  248. embedding.vectors = vectors
  249. embedding.shape = shape
  250. if filepath:
  251. embedding.filename = filepath
  252. embedding.set_hash(hashes.sha256(filepath, "textual_inversion/" + name) or '')
  253. return embedding
  254. def write_loss(log_directory, filename, step, epoch_len, values):
  255. if shared.opts.training_write_csv_every == 0:
  256. return
  257. if step % shared.opts.training_write_csv_every != 0:
  258. return
  259. write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
  260. with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
  261. csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
  262. if write_csv_header:
  263. csv_writer.writeheader()
  264. epoch = (step - 1) // epoch_len
  265. epoch_step = (step - 1) % epoch_len
  266. csv_writer.writerow({
  267. "step": step,
  268. "epoch": epoch,
  269. "epoch_step": epoch_step,
  270. **values,
  271. })
  272. def tensorboard_setup(log_directory):
  273. from torch.utils.tensorboard import SummaryWriter
  274. os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
  275. return SummaryWriter(
  276. log_dir=os.path.join(log_directory, "tensorboard"),
  277. flush_secs=shared.opts.training_tensorboard_flush_every)
  278. def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
  279. tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
  280. tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
  281. tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
  282. tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
  283. def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
  284. tensorboard_writer.add_scalar(tag=tag,
  285. scalar_value=value, global_step=step)
  286. def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
  287. # Convert a pil image to a torch tensor
  288. img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
  289. img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
  290. len(pil_image.getbands()))
  291. img_tensor = img_tensor.permute((2, 0, 1))
  292. tensorboard_writer.add_image(tag, img_tensor, global_step=step)
  293. def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
  294. assert model_name, f"{name} not selected"
  295. assert learn_rate, "Learning rate is empty or 0"
  296. assert isinstance(batch_size, int), "Batch size must be integer"
  297. assert batch_size > 0, "Batch size must be positive"
  298. assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
  299. assert gradient_step > 0, "Gradient accumulation step must be positive"
  300. assert data_root, "Dataset directory is empty"
  301. assert os.path.isdir(data_root), "Dataset directory doesn't exist"
  302. assert os.listdir(data_root), "Dataset directory is empty"
  303. assert template_filename, "Prompt template file not selected"
  304. assert template_file, f"Prompt template file {template_filename} not found"
  305. assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist"
  306. assert steps, "Max steps is empty or 0"
  307. assert isinstance(steps, int), "Max steps must be integer"
  308. assert steps > 0, "Max steps must be positive"
  309. assert isinstance(save_model_every, int), "Save {name} must be integer"
  310. assert save_model_every >= 0, "Save {name} must be positive or 0"
  311. assert isinstance(create_image_every, int), "Create image must be integer"
  312. assert create_image_every >= 0, "Create image must be positive or 0"
  313. if save_model_every or create_image_every:
  314. assert log_directory, "Log directory is empty"
  315. def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_name, preview_cfg_scale, preview_seed, preview_width, preview_height):
  316. from modules import processing
  317. save_embedding_every = save_embedding_every or 0
  318. create_image_every = create_image_every or 0
  319. template_file = textual_inversion_templates.get(template_filename, None)
  320. validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
  321. template_file = template_file.path
  322. shared.state.job = "train-embedding"
  323. shared.state.textinfo = "Initializing textual inversion training..."
  324. shared.state.job_count = steps
  325. filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
  326. log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
  327. unload = shared.opts.unload_models_when_training
  328. if save_embedding_every > 0:
  329. embedding_dir = os.path.join(log_directory, "embeddings")
  330. os.makedirs(embedding_dir, exist_ok=True)
  331. else:
  332. embedding_dir = None
  333. if create_image_every > 0:
  334. images_dir = os.path.join(log_directory, "images")
  335. os.makedirs(images_dir, exist_ok=True)
  336. else:
  337. images_dir = None
  338. if create_image_every > 0 and save_image_with_stored_embedding:
  339. images_embeds_dir = os.path.join(log_directory, "image_embeddings")
  340. os.makedirs(images_embeds_dir, exist_ok=True)
  341. else:
  342. images_embeds_dir = None
  343. hijack = sd_hijack.model_hijack
  344. embedding = hijack.embedding_db.word_embeddings[embedding_name]
  345. checkpoint = sd_models.select_checkpoint()
  346. initial_step = embedding.step or 0
  347. if initial_step >= steps:
  348. shared.state.textinfo = "Model has already been trained beyond specified max steps"
  349. return embedding, filename
  350. scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
  351. clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
  352. torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
  353. None
  354. if clip_grad:
  355. clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
  356. # dataset loading may take a while, so input validations and early returns should be done before this
  357. shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
  358. old_parallel_processing_allowed = shared.parallel_processing_allowed
  359. tensorboard_writer = None
  360. if shared.opts.training_enable_tensorboard:
  361. try:
  362. tensorboard_writer = tensorboard_setup(log_directory)
  363. except ImportError:
  364. errors.report("Error initializing tensorboard", exc_info=True)
  365. pin_memory = shared.opts.pin_memory
  366. ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
  367. if shared.opts.save_training_settings_to_txt:
  368. save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
  369. latent_sampling_method = ds.latent_sampling_method
  370. dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
  371. if unload:
  372. shared.parallel_processing_allowed = False
  373. shared.sd_model.first_stage_model.to(devices.cpu)
  374. embedding.vec.requires_grad = True
  375. optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
  376. if shared.opts.save_optimizer_state:
  377. optimizer_state_dict = None
  378. if os.path.exists(f"{filename}.optim"):
  379. optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
  380. if embedding.checksum() == optimizer_saved_dict.get('hash', None):
  381. optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
  382. if optimizer_state_dict is not None:
  383. optimizer.load_state_dict(optimizer_state_dict)
  384. print("Loaded existing optimizer from checkpoint")
  385. else:
  386. print("No saved optimizer exists in checkpoint")
  387. scaler = torch.cuda.amp.GradScaler()
  388. batch_size = ds.batch_size
  389. gradient_step = ds.gradient_step
  390. # n steps = batch_size * gradient_step * n image processed
  391. steps_per_epoch = len(ds) // batch_size // gradient_step
  392. max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
  393. loss_step = 0
  394. _loss_step = 0 #internal
  395. last_saved_file = "<none>"
  396. last_saved_image = "<none>"
  397. forced_filename = "<none>"
  398. embedding_yet_to_be_embedded = False
  399. is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  400. img_c = None
  401. pbar = tqdm.tqdm(total=steps - initial_step)
  402. try:
  403. sd_hijack_checkpoint.add()
  404. for _ in range((steps-initial_step) * gradient_step):
  405. if scheduler.finished:
  406. break
  407. if shared.state.interrupted:
  408. break
  409. for j, batch in enumerate(dl):
  410. # works as a drop_last=True for gradient accumulation
  411. if j == max_steps_per_epoch:
  412. break
  413. scheduler.apply(optimizer, embedding.step)
  414. if scheduler.finished:
  415. break
  416. if shared.state.interrupted:
  417. break
  418. if clip_grad:
  419. clip_grad_sched.step(embedding.step)
  420. with devices.autocast():
  421. x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
  422. if use_weight:
  423. w = batch.weight.to(devices.device, non_blocking=pin_memory)
  424. c = shared.sd_model.cond_stage_model(batch.cond_text)
  425. if is_training_inpainting_model:
  426. if img_c is None:
  427. img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)
  428. cond = {"c_concat": [img_c], "c_crossattn": [c]}
  429. else:
  430. cond = c
  431. if use_weight:
  432. loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
  433. del w
  434. else:
  435. loss = shared.sd_model.forward(x, cond)[0] / gradient_step
  436. del x
  437. _loss_step += loss.item()
  438. scaler.scale(loss).backward()
  439. # go back until we reach gradient accumulation steps
  440. if (j + 1) % gradient_step != 0:
  441. continue
  442. if clip_grad:
  443. clip_grad(embedding.vec, clip_grad_sched.learn_rate)
  444. scaler.step(optimizer)
  445. scaler.update()
  446. embedding.step += 1
  447. pbar.update()
  448. optimizer.zero_grad(set_to_none=True)
  449. loss_step = _loss_step
  450. _loss_step = 0
  451. steps_done = embedding.step + 1
  452. epoch_num = embedding.step // steps_per_epoch
  453. epoch_step = embedding.step % steps_per_epoch
  454. description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
  455. pbar.set_description(description)
  456. if embedding_dir is not None and steps_done % save_embedding_every == 0:
  457. # Before saving, change name to match current checkpoint.
  458. embedding_name_every = f'{embedding_name}-{steps_done}'
  459. last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
  460. save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
  461. embedding_yet_to_be_embedded = True
  462. write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
  463. "loss": f"{loss_step:.7f}",
  464. "learn_rate": scheduler.learn_rate
  465. })
  466. if images_dir is not None and steps_done % create_image_every == 0:
  467. forced_filename = f'{embedding_name}-{steps_done}'
  468. last_saved_image = os.path.join(images_dir, forced_filename)
  469. shared.sd_model.first_stage_model.to(devices.device)
  470. p = processing.StableDiffusionProcessingTxt2Img(
  471. sd_model=shared.sd_model,
  472. do_not_save_grid=True,
  473. do_not_save_samples=True,
  474. do_not_reload_embeddings=True,
  475. )
  476. if preview_from_txt2img:
  477. p.prompt = preview_prompt
  478. p.negative_prompt = preview_negative_prompt
  479. p.steps = preview_steps
  480. p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
  481. p.cfg_scale = preview_cfg_scale
  482. p.seed = preview_seed
  483. p.width = preview_width
  484. p.height = preview_height
  485. else:
  486. p.prompt = batch.cond_text[0]
  487. p.steps = 20
  488. p.width = training_width
  489. p.height = training_height
  490. preview_text = p.prompt
  491. with closing(p):
  492. processed = processing.process_images(p)
  493. image = processed.images[0] if len(processed.images) > 0 else None
  494. if unload:
  495. shared.sd_model.first_stage_model.to(devices.cpu)
  496. if image is not None:
  497. shared.state.assign_current_image(image)
  498. last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
  499. last_saved_image += f", prompt: {preview_text}"
  500. if tensorboard_writer and shared.opts.training_tensorboard_save_images:
  501. tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
  502. if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
  503. last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
  504. info = PngImagePlugin.PngInfo()
  505. data = torch.load(last_saved_file)
  506. info.add_text("sd-ti-embedding", embedding_to_b64(data))
  507. title = f"<{data.get('name', '???')}>"
  508. try:
  509. vectorSize = list(data['string_to_param'].values())[0].shape[0]
  510. except Exception:
  511. vectorSize = '?'
  512. checkpoint = sd_models.select_checkpoint()
  513. footer_left = checkpoint.model_name
  514. footer_mid = f'[{checkpoint.shorthash}]'
  515. footer_right = f'{vectorSize}v {steps_done}s'
  516. captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
  517. captioned_image = insert_image_data_embed(captioned_image, data)
  518. captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
  519. embedding_yet_to_be_embedded = False
  520. last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
  521. last_saved_image += f", prompt: {preview_text}"
  522. shared.state.job_no = embedding.step
  523. shared.state.textinfo = f"""
  524. <p>
  525. Loss: {loss_step:.7f}<br/>
  526. Step: {steps_done}<br/>
  527. Last prompt: {html.escape(batch.cond_text[0])}<br/>
  528. Last saved embedding: {html.escape(last_saved_file)}<br/>
  529. Last saved image: {html.escape(last_saved_image)}<br/>
  530. </p>
  531. """
  532. filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
  533. save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
  534. except Exception:
  535. errors.report("Error training embedding", exc_info=True)
  536. finally:
  537. pbar.leave = False
  538. pbar.close()
  539. shared.sd_model.first_stage_model.to(devices.device)
  540. shared.parallel_processing_allowed = old_parallel_processing_allowed
  541. sd_hijack_checkpoint.remove()
  542. return embedding, filename
  543. def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
  544. old_embedding_name = embedding.name
  545. old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
  546. old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
  547. old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
  548. try:
  549. embedding.sd_checkpoint = checkpoint.shorthash
  550. embedding.sd_checkpoint_name = checkpoint.model_name
  551. if remove_cached_checksum:
  552. embedding.cached_checksum = None
  553. embedding.name = embedding_name
  554. embedding.optimizer_state_dict = optimizer.state_dict()
  555. embedding.save(filename)
  556. except:
  557. embedding.sd_checkpoint = old_sd_checkpoint
  558. embedding.sd_checkpoint_name = old_sd_checkpoint_name
  559. embedding.name = old_embedding_name
  560. embedding.cached_checksum = old_cached_checksum
  561. raise