123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import torch
- import inspect
- import k_diffusion.sampling
- from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers
- from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
- from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
- from modules.shared import opts
- import modules.shared as shared
- samplers_k_diffusion = [
- ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {'scheduler': 'karras'}),
- ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
- ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde'], {'scheduler': 'exponential', "brownian_noise": True}),
- ('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}),
- ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
- ('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
- ('Euler', 'sample_euler', ['k_euler'], {}),
- ('LMS', 'sample_lms', ['k_lms'], {}),
- ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "second_order": True}),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
- ('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras', "second_order": True}),
- ]
- samplers_data_k_diffusion = [
- sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
- for label, funcname, aliases, options in samplers_k_diffusion
- if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
- ]
- sampler_extra_params = {
- 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_dpm_fast': ['s_noise'],
- 'sample_dpm_2_ancestral': ['s_noise'],
- 'sample_dpmpp_2s_ancestral': ['s_noise'],
- 'sample_dpmpp_sde': ['s_noise'],
- 'sample_dpmpp_2m_sde': ['s_noise'],
- 'sample_dpmpp_3m_sde': ['s_noise'],
- }
- k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
- k_diffusion_scheduler = {x.name: x.function for x in sd_schedulers.schedulers}
- class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
- @property
- def inner_model(self):
- if self.model_wrap is None:
- denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
- return self.model_wrap
- class KDiffusionSampler(sd_samplers_common.Sampler):
- def __init__(self, funcname, sd_model, options=None):
- super().__init__(funcname)
- self.extra_params = sampler_extra_params.get(funcname, [])
- self.options = options or {}
- self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
- self.model_wrap_cfg = CFGDenoiserKDiffusion(self)
- self.model_wrap = self.model_wrap_cfg.inner_model
- def get_sigmas(self, p, steps):
- discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
- if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
- discard_next_to_last_sigma = True
- p.extra_generation_params["Discard penultimate sigma"] = True
- steps += 1 if discard_next_to_last_sigma else 0
- scheduler_name = (p.hr_scheduler if p.is_hr_pass else p.scheduler) or 'Automatic'
- if scheduler_name == 'Automatic':
- scheduler_name = self.config.options.get('scheduler', None)
- scheduler = sd_schedulers.schedulers_map.get(scheduler_name)
- m_sigma_min, m_sigma_max = self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
- if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
- elif scheduler is None or scheduler.function is None:
- sigmas = self.model_wrap.get_sigmas(steps)
- else:
- sigmas_kwargs = {'sigma_min': sigma_min, 'sigma_max': sigma_max}
- if scheduler.label != 'Automatic' and not p.is_hr_pass:
- p.extra_generation_params["Schedule type"] = scheduler.label
- elif scheduler.label != p.extra_generation_params.get("Schedule type"):
- p.extra_generation_params["Hires schedule type"] = scheduler.label
- if opts.sigma_min != 0 and opts.sigma_min != m_sigma_min:
- sigmas_kwargs['sigma_min'] = opts.sigma_min
- p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
- if opts.sigma_max != 0 and opts.sigma_max != m_sigma_max:
- sigmas_kwargs['sigma_max'] = opts.sigma_max
- p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
- if scheduler.default_rho != -1 and opts.rho != 0 and opts.rho != scheduler.default_rho:
- sigmas_kwargs['rho'] = opts.rho
- p.extra_generation_params["Schedule rho"] = opts.rho
- if scheduler.need_inner_model:
- sigmas_kwargs['inner_model'] = self.model_wrap
- sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=shared.device)
- if discard_next_to_last_sigma:
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
- return sigmas
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
- sigmas = self.get_sigmas(p, steps)
- sigma_sched = sigmas[steps - t_enc - 1:]
- xi = x + noise * sigma_sched[0]
- if opts.img2img_extra_noise > 0:
- p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
- extra_noise_params = ExtraNoiseParams(noise, x, xi)
- extra_noise_callback(extra_noise_params)
- noise = extra_noise_params.noise
- xi += noise * opts.img2img_extra_noise
- extra_params_kwargs = self.initialize(p)
- parameters = inspect.signature(self.func).parameters
- if 'sigma_min' in parameters:
- ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
- extra_params_kwargs['sigma_min'] = sigma_sched[-2]
- if 'sigma_max' in parameters:
- extra_params_kwargs['sigma_max'] = sigma_sched[0]
- if 'n' in parameters:
- extra_params_kwargs['n'] = len(sigma_sched) - 1
- if 'sigma_sched' in parameters:
- extra_params_kwargs['sigma_sched'] = sigma_sched
- if 'sigmas' in parameters:
- extra_params_kwargs['sigmas'] = sigma_sched
- if self.config.options.get('brownian_noise', False):
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
- extra_params_kwargs['noise_sampler'] = noise_sampler
- if self.config.options.get('solver_type', None) == 'heun':
- extra_params_kwargs['solver_type'] = 'heun'
- self.model_wrap_cfg.init_latent = x
- self.last_latent = x
- self.sampler_extra_args = {
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale,
- 's_min_uncond': self.s_min_uncond
- }
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
- self.add_infotext(p)
- return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps = steps or p.steps
- sigmas = self.get_sigmas(p, steps)
- if opts.sgm_noise_multiplier:
- p.extra_generation_params["SGM noise multiplier"] = True
- x = x * torch.sqrt(1.0 + sigmas[0] ** 2.0)
- else:
- x = x * sigmas[0]
- extra_params_kwargs = self.initialize(p)
- parameters = inspect.signature(self.func).parameters
- if 'n' in parameters:
- extra_params_kwargs['n'] = steps
- if 'sigma_min' in parameters:
- extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
- extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
- if 'sigmas' in parameters:
- extra_params_kwargs['sigmas'] = sigmas
- if self.config.options.get('brownian_noise', False):
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
- extra_params_kwargs['noise_sampler'] = noise_sampler
- if self.config.options.get('solver_type', None) == 'heun':
- extra_params_kwargs['solver_type'] = 'heun'
- self.last_latent = x
- self.sampler_extra_args = {
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale,
- 's_min_uncond': self.s_min_uncond
- }
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
- self.add_infotext(p)
- return samples
|