sd_models_config.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. import os
  2. import torch
  3. from modules import shared, paths, sd_disable_initialization, devices
  4. sd_configs_path = shared.sd_configs_path
  5. sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
  6. sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
  7. config_default = shared.sd_default_config
  8. config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
  9. config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
  10. config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
  11. config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
  12. config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
  13. config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
  14. config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
  15. config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
  16. config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
  17. config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
  18. config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
  19. config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
  20. config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
  21. def is_using_v_parameterization_for_sd2(state_dict):
  22. """
  23. Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
  24. """
  25. import ldm.modules.diffusionmodules.openaimodel
  26. device = devices.cpu
  27. with sd_disable_initialization.DisableInitialization():
  28. unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
  29. use_checkpoint=True,
  30. use_fp16=False,
  31. image_size=32,
  32. in_channels=4,
  33. out_channels=4,
  34. model_channels=320,
  35. attention_resolutions=[4, 2, 1],
  36. num_res_blocks=2,
  37. channel_mult=[1, 2, 4, 4],
  38. num_head_channels=64,
  39. use_spatial_transformer=True,
  40. use_linear_in_transformer=True,
  41. transformer_depth=1,
  42. context_dim=1024,
  43. legacy=False
  44. )
  45. unet.eval()
  46. with torch.no_grad():
  47. unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
  48. unet.load_state_dict(unet_sd, strict=True)
  49. unet.to(device=device, dtype=torch.float)
  50. test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
  51. x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
  52. out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
  53. return out < -1
  54. def guess_model_config_from_state_dict(sd, filename):
  55. sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
  56. diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
  57. sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
  58. if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
  59. if diffusion_model_input.shape[1] == 9:
  60. return config_sdxl_inpainting
  61. else:
  62. return config_sdxl
  63. if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
  64. return config_sdxl_refiner
  65. elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
  66. return config_depth_model
  67. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
  68. return config_unclip
  69. elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
  70. return config_unopenclip
  71. if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
  72. if diffusion_model_input.shape[1] == 9:
  73. return config_sd2_inpainting
  74. elif is_using_v_parameterization_for_sd2(sd):
  75. return config_sd2v
  76. else:
  77. return config_sd2
  78. if diffusion_model_input is not None:
  79. if diffusion_model_input.shape[1] == 9:
  80. return config_inpainting
  81. if diffusion_model_input.shape[1] == 8:
  82. return config_instruct_pix2pix
  83. if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
  84. if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
  85. return config_alt_diffusion_m18
  86. return config_alt_diffusion
  87. return config_default
  88. def find_checkpoint_config(state_dict, info):
  89. if info is None:
  90. return guess_model_config_from_state_dict(state_dict, "")
  91. config = find_checkpoint_config_near_filename(info)
  92. if config is not None:
  93. return config
  94. return guess_model_config_from_state_dict(state_dict, info.filename)
  95. def find_checkpoint_config_near_filename(info):
  96. if info is None:
  97. return None
  98. config = f"{os.path.splitext(info.filename)[0]}.yaml"
  99. if os.path.exists(config):
  100. return config
  101. return None