123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936 |
- import collections
- import os
- import sys
- import threading
- import torch
- import re
- import safetensors.torch
- from omegaconf import OmegaConf, ListConfig
- from urllib import request
- import ldm.modules.midas as midas
- from ldm.util import instantiate_from_config
- from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
- from modules.timer import Timer
- from modules.shared import opts
- import tomesd
- import numpy as np
- model_dir = "Stable-diffusion"
- model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
- checkpoints_list = {}
- checkpoint_aliases = {}
- checkpoint_alisases = checkpoint_aliases # for compatibility with old name
- checkpoints_loaded = collections.OrderedDict()
- def replace_key(d, key, new_key, value):
- keys = list(d.keys())
- d[new_key] = value
- if key not in keys:
- return d
- index = keys.index(key)
- keys[index] = new_key
- new_d = {k: d[k] for k in keys}
- d.clear()
- d.update(new_d)
- return d
- class CheckpointInfo:
- def __init__(self, filename):
- self.filename = filename
- abspath = os.path.abspath(filename)
- abs_ckpt_dir = os.path.abspath(shared.cmd_opts.ckpt_dir) if shared.cmd_opts.ckpt_dir is not None else None
- self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
- if abs_ckpt_dir and abspath.startswith(abs_ckpt_dir):
- name = abspath.replace(abs_ckpt_dir, '')
- elif abspath.startswith(model_path):
- name = abspath.replace(model_path, '')
- else:
- name = os.path.basename(filename)
- if name.startswith("\\") or name.startswith("/"):
- name = name[1:]
- def read_metadata():
- metadata = read_metadata_from_safetensors(filename)
- self.modelspec_thumbnail = metadata.pop('modelspec.thumbnail', None)
- return metadata
- self.metadata = {}
- if self.is_safetensors:
- try:
- self.metadata = cache.cached_data_for_file('safetensors-metadata', "checkpoint/" + name, filename, read_metadata)
- except Exception as e:
- errors.display(e, f"reading metadata for {filename}")
- self.name = name
- self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
- self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
- self.hash = model_hash(filename)
- self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
- self.shorthash = self.sha256[0:10] if self.sha256 else None
- self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
- self.short_title = self.name_for_extra if self.shorthash is None else f'{self.name_for_extra} [{self.shorthash}]'
- self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]']
- if self.shorthash:
- self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
- def register(self):
- checkpoints_list[self.title] = self
- for id in self.ids:
- checkpoint_aliases[id] = self
- def calculate_shorthash(self):
- self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
- if self.sha256 is None:
- return
- shorthash = self.sha256[0:10]
- if self.shorthash == self.sha256[0:10]:
- return self.shorthash
- self.shorthash = shorthash
- if self.shorthash not in self.ids:
- self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
- old_title = self.title
- self.title = f'{self.name} [{self.shorthash}]'
- self.short_title = f'{self.name_for_extra} [{self.shorthash}]'
- replace_key(checkpoints_list, old_title, self.title, self)
- self.register()
- return self.shorthash
- try:
- # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
- from transformers import logging, CLIPModel # noqa: F401
- logging.set_verbosity_error()
- except Exception:
- pass
- def setup_model():
- """called once at startup to do various one-time tasks related to SD models"""
- os.makedirs(model_path, exist_ok=True)
- enable_midas_autodownload()
- patch_given_betas()
- def checkpoint_tiles(use_short=False):
- return [x.short_title if use_short else x.title for x in checkpoints_list.values()]
- def list_models():
- checkpoints_list.clear()
- checkpoint_aliases.clear()
- cmd_ckpt = shared.cmd_opts.ckpt
- if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
- model_url = None
- else:
- model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
- model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
- if os.path.exists(cmd_ckpt):
- checkpoint_info = CheckpointInfo(cmd_ckpt)
- checkpoint_info.register()
- shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
- elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
- print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
- for filename in model_list:
- checkpoint_info = CheckpointInfo(filename)
- checkpoint_info.register()
- re_strip_checksum = re.compile(r"\s*\[[^]]+]\s*$")
- def get_closet_checkpoint_match(search_string):
- if not search_string:
- return None
- checkpoint_info = checkpoint_aliases.get(search_string, None)
- if checkpoint_info is not None:
- return checkpoint_info
- found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
- if found:
- return found[0]
- search_string_without_checksum = re.sub(re_strip_checksum, '', search_string)
- found = sorted([info for info in checkpoints_list.values() if search_string_without_checksum in info.title], key=lambda x: len(x.title))
- if found:
- return found[0]
- return None
- def model_hash(filename):
- """old hash that only looks at a small part of the file and is prone to collisions"""
- try:
- with open(filename, "rb") as file:
- import hashlib
- m = hashlib.sha256()
- file.seek(0x100000)
- m.update(file.read(0x10000))
- return m.hexdigest()[0:8]
- except FileNotFoundError:
- return 'NOFILE'
- def select_checkpoint():
- """Raises `FileNotFoundError` if no checkpoints are found."""
- model_checkpoint = shared.opts.sd_model_checkpoint
- checkpoint_info = checkpoint_aliases.get(model_checkpoint, None)
- if checkpoint_info is not None:
- return checkpoint_info
- if len(checkpoints_list) == 0:
- error_message = "No checkpoints found. When searching for checkpoints, looked at:"
- if shared.cmd_opts.ckpt is not None:
- error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
- error_message += f"\n - directory {model_path}"
- if shared.cmd_opts.ckpt_dir is not None:
- error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
- error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
- raise FileNotFoundError(error_message)
- checkpoint_info = next(iter(checkpoints_list.values()))
- if model_checkpoint is not None:
- print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
- return checkpoint_info
- checkpoint_dict_replacements_sd1 = {
- 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
- 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
- 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
- }
- checkpoint_dict_replacements_sd2_turbo = { # Converts SD 2.1 Turbo from SGM to LDM format.
- 'conditioner.embedders.0.': 'cond_stage_model.',
- }
- def transform_checkpoint_dict_key(k, replacements):
- for text, replacement in replacements.items():
- if k.startswith(text):
- k = replacement + k[len(text):]
- return k
- def get_state_dict_from_checkpoint(pl_sd):
- pl_sd = pl_sd.pop("state_dict", pl_sd)
- pl_sd.pop("state_dict", None)
- is_sd2_turbo = 'conditioner.embedders.0.model.ln_final.weight' in pl_sd and pl_sd['conditioner.embedders.0.model.ln_final.weight'].size()[0] == 1024
- sd = {}
- for k, v in pl_sd.items():
- if is_sd2_turbo:
- new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd2_turbo)
- else:
- new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd1)
- if new_key is not None:
- sd[new_key] = v
- pl_sd.clear()
- pl_sd.update(sd)
- return pl_sd
- def read_metadata_from_safetensors(filename):
- import json
- with open(filename, mode="rb") as file:
- metadata_len = file.read(8)
- metadata_len = int.from_bytes(metadata_len, "little")
- json_start = file.read(2)
- assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
- json_data = json_start + file.read(metadata_len-2)
- json_obj = json.loads(json_data)
- res = {}
- for k, v in json_obj.get("__metadata__", {}).items():
- res[k] = v
- if isinstance(v, str) and v[0:1] == '{':
- try:
- res[k] = json.loads(v)
- except Exception:
- pass
- return res
- def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
- _, extension = os.path.splitext(checkpoint_file)
- if extension.lower() == ".safetensors":
- device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
- if not shared.opts.disable_mmap_load_safetensors:
- pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
- else:
- pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read())
- pl_sd = {k: v.to(device) for k, v in pl_sd.items()}
- else:
- pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
- if print_global_state and "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = get_state_dict_from_checkpoint(pl_sd)
- return sd
- def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
- sd_model_hash = checkpoint_info.calculate_shorthash()
- timer.record("calculate hash")
- if checkpoint_info in checkpoints_loaded:
- # use checkpoint cache
- print(f"Loading weights [{sd_model_hash}] from cache")
- # move to end as latest
- checkpoints_loaded.move_to_end(checkpoint_info)
- return checkpoints_loaded[checkpoint_info]
- print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
- res = read_state_dict(checkpoint_info.filename)
- timer.record("load weights from disk")
- return res
- class SkipWritingToConfig:
- """This context manager prevents load_model_weights from writing checkpoint name to the config when it loads weight."""
- skip = False
- previous = None
- def __enter__(self):
- self.previous = SkipWritingToConfig.skip
- SkipWritingToConfig.skip = True
- return self
- def __exit__(self, exc_type, exc_value, exc_traceback):
- SkipWritingToConfig.skip = self.previous
- def check_fp8(model):
- if model is None:
- return None
- if devices.get_optimal_device_name() == "mps":
- enable_fp8 = False
- elif shared.opts.fp8_storage == "Enable":
- enable_fp8 = True
- elif getattr(model, "is_sdxl", False) and shared.opts.fp8_storage == "Enable for SDXL":
- enable_fp8 = True
- else:
- enable_fp8 = False
- return enable_fp8
- def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
- sd_model_hash = checkpoint_info.calculate_shorthash()
- timer.record("calculate hash")
- if devices.fp8:
- # prevent model to load state dict in fp8
- model.half()
- if not SkipWritingToConfig.skip:
- shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
- if state_dict is None:
- state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
- model.is_sdxl = hasattr(model, 'conditioner')
- model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
- model.is_sd1 = not model.is_sdxl and not model.is_sd2
- model.is_ssd = model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in state_dict.keys()
- if model.is_sdxl:
- sd_models_xl.extend_sdxl(model)
- if model.is_ssd:
- sd_hijack.model_hijack.convert_sdxl_to_ssd(model)
- if shared.opts.sd_checkpoint_cache > 0:
- # cache newly loaded model
- checkpoints_loaded[checkpoint_info] = state_dict.copy()
- model.load_state_dict(state_dict, strict=False)
- timer.record("apply weights to model")
- del state_dict
- if shared.cmd_opts.opt_channelslast:
- model.to(memory_format=torch.channels_last)
- timer.record("apply channels_last")
- if shared.cmd_opts.no_half:
- model.float()
- model.alphas_cumprod_original = model.alphas_cumprod
- devices.dtype_unet = torch.float32
- timer.record("apply float()")
- else:
- vae = model.first_stage_model
- depth_model = getattr(model, 'depth_model', None)
- # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
- if shared.cmd_opts.no_half_vae:
- model.first_stage_model = None
- # with --upcast-sampling, don't convert the depth model weights to float16
- if shared.cmd_opts.upcast_sampling and depth_model:
- model.depth_model = None
- alphas_cumprod = model.alphas_cumprod
- model.alphas_cumprod = None
- model.half()
- model.alphas_cumprod = alphas_cumprod
- model.alphas_cumprod_original = alphas_cumprod
- model.first_stage_model = vae
- if depth_model:
- model.depth_model = depth_model
- devices.dtype_unet = torch.float16
- timer.record("apply half()")
- apply_alpha_schedule_override(model)
- for module in model.modules():
- if hasattr(module, 'fp16_weight'):
- del module.fp16_weight
- if hasattr(module, 'fp16_bias'):
- del module.fp16_bias
- if check_fp8(model):
- devices.fp8 = True
- first_stage = model.first_stage_model
- model.first_stage_model = None
- for module in model.modules():
- if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
- if shared.opts.cache_fp16_weight:
- module.fp16_weight = module.weight.data.clone().cpu().half()
- if module.bias is not None:
- module.fp16_bias = module.bias.data.clone().cpu().half()
- module.to(torch.float8_e4m3fn)
- model.first_stage_model = first_stage
- timer.record("apply fp8")
- else:
- devices.fp8 = False
- devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
- model.first_stage_model.to(devices.dtype_vae)
- timer.record("apply dtype to VAE")
- # clean up cache if limit is reached
- while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
- checkpoints_loaded.popitem(last=False)
- model.sd_model_hash = sd_model_hash
- model.sd_model_checkpoint = checkpoint_info.filename
- model.sd_checkpoint_info = checkpoint_info
- shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
- if hasattr(model, 'logvar'):
- model.logvar = model.logvar.to(devices.device) # fix for training
- sd_vae.delete_base_vae()
- sd_vae.clear_loaded_vae()
- vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
- sd_vae.load_vae(model, vae_file, vae_source)
- timer.record("load VAE")
- def enable_midas_autodownload():
- """
- Gives the ldm.modules.midas.api.load_model function automatic downloading.
- When the 512-depth-ema model, and other future models like it, is loaded,
- it calls midas.api.load_model to load the associated midas depth model.
- This function applies a wrapper to download the model to the correct
- location automatically.
- """
- midas_path = os.path.join(paths.models_path, 'midas')
- # stable-diffusion-stability-ai hard-codes the midas model path to
- # a location that differs from where other scripts using this model look.
- # HACK: Overriding the path here.
- for k, v in midas.api.ISL_PATHS.items():
- file_name = os.path.basename(v)
- midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
- midas_urls = {
- "dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
- "dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
- "midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
- "midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
- }
- midas.api.load_model_inner = midas.api.load_model
- def load_model_wrapper(model_type):
- path = midas.api.ISL_PATHS[model_type]
- if not os.path.exists(path):
- if not os.path.exists(midas_path):
- os.mkdir(midas_path)
- print(f"Downloading midas model weights for {model_type} to {path}")
- request.urlretrieve(midas_urls[model_type], path)
- print(f"{model_type} downloaded")
- return midas.api.load_model_inner(model_type)
- midas.api.load_model = load_model_wrapper
- def patch_given_betas():
- import ldm.models.diffusion.ddpm
- def patched_register_schedule(*args, **kwargs):
- """a modified version of register_schedule function that converts plain list from Omegaconf into numpy"""
- if isinstance(args[1], ListConfig):
- args = (args[0], np.array(args[1]), *args[2:])
- original_register_schedule(*args, **kwargs)
- original_register_schedule = patches.patch(__name__, ldm.models.diffusion.ddpm.DDPM, 'register_schedule', patched_register_schedule)
- def repair_config(sd_config):
- if not hasattr(sd_config.model.params, "use_ema"):
- sd_config.model.params.use_ema = False
- if hasattr(sd_config.model.params, 'unet_config'):
- if shared.cmd_opts.no_half:
- sd_config.model.params.unet_config.params.use_fp16 = False
- elif shared.cmd_opts.upcast_sampling:
- sd_config.model.params.unet_config.params.use_fp16 = True
- if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
- sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
- # For UnCLIP-L, override the hardcoded karlo directory
- if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
- karlo_path = os.path.join(paths.models_path, 'karlo')
- sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
- def rescale_zero_terminal_snr_abar(alphas_cumprod):
- alphas_bar_sqrt = alphas_cumprod.sqrt()
- # Store old values.
- alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
- alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
- # Shift so the last timestep is zero.
- alphas_bar_sqrt -= (alphas_bar_sqrt_T)
- # Scale so the first timestep is back to the old value.
- alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
- # Convert alphas_bar_sqrt to betas
- alphas_bar = alphas_bar_sqrt ** 2 # Revert sqrt
- alphas_bar[-1] = 4.8973451890853435e-08
- return alphas_bar
- def apply_alpha_schedule_override(sd_model, p=None):
- """
- Applies an override to the alpha schedule of the model according to settings.
- - downcasts the alpha schedule to half precision
- - rescales the alpha schedule to have zero terminal SNR
- """
- if not hasattr(sd_model, 'alphas_cumprod') or not hasattr(sd_model, 'alphas_cumprod_original'):
- return
- sd_model.alphas_cumprod = sd_model.alphas_cumprod_original.to(shared.device)
- if opts.use_downcasted_alpha_bar:
- if p is not None:
- p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
- sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
- if opts.sd_noise_schedule == "Zero Terminal SNR":
- if p is not None:
- p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
- sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
- sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
- sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
- sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight'
- sdxl_refiner_clip_weight = 'conditioner.embedders.0.model.ln_final.weight'
- class SdModelData:
- def __init__(self):
- self.sd_model = None
- self.loaded_sd_models = []
- self.was_loaded_at_least_once = False
- self.lock = threading.Lock()
- def get_sd_model(self):
- if self.was_loaded_at_least_once:
- return self.sd_model
- if self.sd_model is None:
- with self.lock:
- if self.sd_model is not None or self.was_loaded_at_least_once:
- return self.sd_model
- try:
- load_model()
- except Exception as e:
- errors.display(e, "loading stable diffusion model", full_traceback=True)
- print("", file=sys.stderr)
- print("Stable diffusion model failed to load", file=sys.stderr)
- self.sd_model = None
- return self.sd_model
- def set_sd_model(self, v, already_loaded=False):
- self.sd_model = v
- if already_loaded:
- sd_vae.base_vae = getattr(v, "base_vae", None)
- sd_vae.loaded_vae_file = getattr(v, "loaded_vae_file", None)
- sd_vae.checkpoint_info = v.sd_checkpoint_info
- try:
- self.loaded_sd_models.remove(v)
- except ValueError:
- pass
- if v is not None:
- self.loaded_sd_models.insert(0, v)
- model_data = SdModelData()
- def get_empty_cond(sd_model):
- p = processing.StableDiffusionProcessingTxt2Img()
- extra_networks.activate(p, {})
- if hasattr(sd_model, 'conditioner'):
- d = sd_model.get_learned_conditioning([""])
- return d['crossattn']
- else:
- return sd_model.cond_stage_model([""])
- def send_model_to_cpu(m):
- if m.lowvram:
- lowvram.send_everything_to_cpu()
- else:
- m.to(devices.cpu)
- devices.torch_gc()
- def model_target_device(m):
- if lowvram.is_needed(m):
- return devices.cpu
- else:
- return devices.device
- def send_model_to_device(m):
- lowvram.apply(m)
- if not m.lowvram:
- m.to(shared.device)
- def send_model_to_trash(m):
- m.to(device="meta")
- devices.torch_gc()
- def load_model(checkpoint_info=None, already_loaded_state_dict=None):
- from modules import sd_hijack
- checkpoint_info = checkpoint_info or select_checkpoint()
- timer = Timer()
- if model_data.sd_model:
- send_model_to_trash(model_data.sd_model)
- model_data.sd_model = None
- devices.torch_gc()
- timer.record("unload existing model")
- if already_loaded_state_dict is not None:
- state_dict = already_loaded_state_dict
- else:
- state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
- checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
- clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
- timer.record("find config")
- sd_config = OmegaConf.load(checkpoint_config)
- repair_config(sd_config)
- timer.record("load config")
- print(f"Creating model from config: {checkpoint_config}")
- sd_model = None
- try:
- with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
- with sd_disable_initialization.InitializeOnMeta():
- sd_model = instantiate_from_config(sd_config.model)
- except Exception as e:
- errors.display(e, "creating model quickly", full_traceback=True)
- if sd_model is None:
- print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
- with sd_disable_initialization.InitializeOnMeta():
- sd_model = instantiate_from_config(sd_config.model)
- sd_model.used_config = checkpoint_config
- timer.record("create model")
- if shared.cmd_opts.no_half:
- weight_dtype_conversion = None
- else:
- weight_dtype_conversion = {
- 'first_stage_model': None,
- 'alphas_cumprod': None,
- '': torch.float16,
- }
- with sd_disable_initialization.LoadStateDictOnMeta(state_dict, device=model_target_device(sd_model), weight_dtype_conversion=weight_dtype_conversion):
- load_model_weights(sd_model, checkpoint_info, state_dict, timer)
- timer.record("load weights from state dict")
- send_model_to_device(sd_model)
- timer.record("move model to device")
- sd_hijack.model_hijack.hijack(sd_model)
- timer.record("hijack")
- sd_model.eval()
- model_data.set_sd_model(sd_model)
- model_data.was_loaded_at_least_once = True
- sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
- timer.record("load textual inversion embeddings")
- script_callbacks.model_loaded_callback(sd_model)
- timer.record("scripts callbacks")
- with devices.autocast(), torch.no_grad():
- sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model)
- timer.record("calculate empty prompt")
- print(f"Model loaded in {timer.summary()}.")
- return sd_model
- def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
- """
- Checks if the desired checkpoint from checkpoint_info is not already loaded in model_data.loaded_sd_models.
- If it is loaded, returns that (moving it to GPU if necessary, and moving the currently loadded model to CPU if necessary).
- If not, returns the model that can be used to load weights from checkpoint_info's file.
- If no such model exists, returns None.
- Additionally deletes loaded models that are over the limit set in settings (sd_checkpoints_limit).
- """
- if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
- return sd_model
- if shared.opts.sd_checkpoints_keep_in_cpu:
- send_model_to_cpu(sd_model)
- timer.record("send model to cpu")
- already_loaded = None
- for i in reversed(range(len(model_data.loaded_sd_models))):
- loaded_model = model_data.loaded_sd_models[i]
- if loaded_model.sd_checkpoint_info.filename == checkpoint_info.filename:
- already_loaded = loaded_model
- continue
- if len(model_data.loaded_sd_models) > shared.opts.sd_checkpoints_limit > 0:
- print(f"Unloading model {len(model_data.loaded_sd_models)} over the limit of {shared.opts.sd_checkpoints_limit}: {loaded_model.sd_checkpoint_info.title}")
- del model_data.loaded_sd_models[i]
- send_model_to_trash(loaded_model)
- timer.record("send model to trash")
- if already_loaded is not None:
- send_model_to_device(already_loaded)
- timer.record("send model to device")
- model_data.set_sd_model(already_loaded, already_loaded=True)
- if not SkipWritingToConfig.skip:
- shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title
- shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256
- print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}")
- sd_vae.reload_vae_weights(already_loaded)
- return model_data.sd_model
- elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit:
- print(f"Loading model {checkpoint_info.title} ({len(model_data.loaded_sd_models) + 1} out of {shared.opts.sd_checkpoints_limit})")
- model_data.sd_model = None
- load_model(checkpoint_info)
- return model_data.sd_model
- elif len(model_data.loaded_sd_models) > 0:
- sd_model = model_data.loaded_sd_models.pop()
- model_data.sd_model = sd_model
- sd_vae.base_vae = getattr(sd_model, "base_vae", None)
- sd_vae.loaded_vae_file = getattr(sd_model, "loaded_vae_file", None)
- sd_vae.checkpoint_info = sd_model.sd_checkpoint_info
- print(f"Reusing loaded model {sd_model.sd_checkpoint_info.title} to load {checkpoint_info.title}")
- return sd_model
- else:
- return None
- def reload_model_weights(sd_model=None, info=None, forced_reload=False):
- checkpoint_info = info or select_checkpoint()
- timer = Timer()
- if not sd_model:
- sd_model = model_data.sd_model
- if sd_model is None: # previous model load failed
- current_checkpoint_info = None
- else:
- current_checkpoint_info = sd_model.sd_checkpoint_info
- if check_fp8(sd_model) != devices.fp8:
- # load from state dict again to prevent extra numerical errors
- forced_reload = True
- elif sd_model.sd_model_checkpoint == checkpoint_info.filename and not forced_reload:
- return sd_model
- sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer)
- if not forced_reload and sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
- return sd_model
- if sd_model is not None:
- sd_unet.apply_unet("None")
- send_model_to_cpu(sd_model)
- sd_hijack.model_hijack.undo_hijack(sd_model)
- state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
- checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
- timer.record("find config")
- if sd_model is None or checkpoint_config != sd_model.used_config:
- if sd_model is not None:
- send_model_to_trash(sd_model)
- load_model(checkpoint_info, already_loaded_state_dict=state_dict)
- return model_data.sd_model
- try:
- load_model_weights(sd_model, checkpoint_info, state_dict, timer)
- except Exception:
- print("Failed to load checkpoint, restoring previous")
- load_model_weights(sd_model, current_checkpoint_info, None, timer)
- raise
- finally:
- sd_hijack.model_hijack.hijack(sd_model)
- timer.record("hijack")
- if not sd_model.lowvram:
- sd_model.to(devices.device)
- timer.record("move model to device")
- script_callbacks.model_loaded_callback(sd_model)
- timer.record("script callbacks")
- print(f"Weights loaded in {timer.summary()}.")
- model_data.set_sd_model(sd_model)
- sd_unet.apply_unet()
- return sd_model
- def unload_model_weights(sd_model=None, info=None):
- send_model_to_cpu(sd_model or shared.sd_model)
- return sd_model
- def apply_token_merging(sd_model, token_merging_ratio):
- """
- Applies speed and memory optimizations from tomesd.
- """
- current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
- if current_token_merging_ratio == token_merging_ratio:
- return
- if current_token_merging_ratio > 0:
- tomesd.remove_patch(sd_model)
- if token_merging_ratio > 0:
- tomesd.apply_patch(
- sd_model,
- ratio=token_merging_ratio,
- use_rand=False, # can cause issues with some samplers
- merge_attn=True,
- merge_crossattn=False,
- merge_mlp=False
- )
- sd_model.applied_token_merged_ratio = token_merging_ratio
|