123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- import os
- from contextlib import closing
- from pathlib import Path
- import numpy as np
- from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError
- import gradio as gr
- from modules import images
- from modules.infotext_utils import create_override_settings_dict, parse_generation_parameters
- from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
- from modules.shared import opts, state
- from modules.sd_models import get_closet_checkpoint_match
- import modules.shared as shared
- import modules.processing as processing
- from modules.ui import plaintext_to_html
- import modules.scripts
- def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
- output_dir = output_dir.strip()
- processing.fix_seed(p)
- batch_images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
- is_inpaint_batch = False
- if inpaint_mask_dir:
- inpaint_masks = shared.listfiles(inpaint_mask_dir)
- is_inpaint_batch = bool(inpaint_masks)
- if is_inpaint_batch:
- print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
- print(f"Will process {len(batch_images)} images, creating {p.n_iter * p.batch_size} new images for each.")
- state.job_count = len(batch_images) * p.n_iter
- # extract "default" params to use in case getting png info fails
- prompt = p.prompt
- negative_prompt = p.negative_prompt
- seed = p.seed
- cfg_scale = p.cfg_scale
- sampler_name = p.sampler_name
- steps = p.steps
- override_settings = p.override_settings
- sd_model_checkpoint_override = get_closet_checkpoint_match(override_settings.get("sd_model_checkpoint", None))
- batch_results = None
- discard_further_results = False
- for i, image in enumerate(batch_images):
- state.job = f"{i+1} out of {len(batch_images)}"
- if state.skipped:
- state.skipped = False
- if state.interrupted or state.stopping_generation:
- break
- try:
- img = images.read(image)
- except UnidentifiedImageError as e:
- print(e)
- continue
- # Use the EXIF orientation of photos taken by smartphones.
- img = ImageOps.exif_transpose(img)
- if to_scale:
- p.width = int(img.width * scale_by)
- p.height = int(img.height * scale_by)
- p.init_images = [img] * p.batch_size
- image_path = Path(image)
- if is_inpaint_batch:
- # try to find corresponding mask for an image using simple filename matching
- if len(inpaint_masks) == 1:
- mask_image_path = inpaint_masks[0]
- else:
- # try to find corresponding mask for an image using simple filename matching
- mask_image_dir = Path(inpaint_mask_dir)
- masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))
- if len(masks_found) == 0:
- print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
- continue
- # it should contain only 1 matching mask
- # otherwise user has many masks with the same name but different extensions
- mask_image_path = masks_found[0]
- mask_image = images.read(mask_image_path)
- p.image_mask = mask_image
- if use_png_info:
- try:
- info_img = img
- if png_info_dir:
- info_img_path = os.path.join(png_info_dir, os.path.basename(image))
- info_img = images.read(info_img_path)
- geninfo, _ = images.read_info_from_image(info_img)
- parsed_parameters = parse_generation_parameters(geninfo)
- parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
- except Exception:
- parsed_parameters = {}
- p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
- p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
- p.seed = int(parsed_parameters.get("Seed", seed))
- p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
- p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
- p.steps = int(parsed_parameters.get("Steps", steps))
- model_info = get_closet_checkpoint_match(parsed_parameters.get("Model hash", None))
- if model_info is not None:
- p.override_settings['sd_model_checkpoint'] = model_info.name
- elif sd_model_checkpoint_override:
- p.override_settings['sd_model_checkpoint'] = sd_model_checkpoint_override
- else:
- p.override_settings.pop("sd_model_checkpoint", None)
- if output_dir:
- p.outpath_samples = output_dir
- p.override_settings['save_to_dirs'] = False
- p.override_settings['save_images_replace_action'] = "Add number suffix"
- if p.n_iter > 1 or p.batch_size > 1:
- p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
- else:
- p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
- proc = modules.scripts.scripts_img2img.run(p, *args)
- if proc is None:
- p.override_settings.pop('save_images_replace_action', None)
- proc = process_images(p)
- if not discard_further_results and proc:
- if batch_results:
- batch_results.images.extend(proc.images)
- batch_results.infotexts.extend(proc.infotexts)
- else:
- batch_results = proc
- if 0 <= shared.opts.img2img_batch_show_results_limit < len(batch_results.images):
- discard_further_results = True
- batch_results.images = batch_results.images[:int(shared.opts.img2img_batch_show_results_limit)]
- batch_results.infotexts = batch_results.infotexts[:int(shared.opts.img2img_batch_show_results_limit)]
- return batch_results
- def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, *args):
- override_settings = create_override_settings_dict(override_settings_texts)
- is_batch = mode == 5
- if mode == 0: # img2img
- image = init_img
- mask = None
- elif mode == 1: # img2img sketch
- image = sketch
- mask = None
- elif mode == 2: # inpaint
- image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
- mask = processing.create_binary_mask(mask)
- elif mode == 3: # inpaint sketch
- image = inpaint_color_sketch
- orig = inpaint_color_sketch_orig or inpaint_color_sketch
- pred = np.any(np.array(image) != np.array(orig), axis=-1)
- mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
- mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
- blur = ImageFilter.GaussianBlur(mask_blur)
- image = Image.composite(image.filter(blur), orig, mask.filter(blur))
- elif mode == 4: # inpaint upload mask
- image = init_img_inpaint
- mask = init_mask_inpaint
- else:
- image = None
- mask = None
- image = images.fix_image(image)
- mask = images.fix_image(mask)
- if selected_scale_tab == 1 and not is_batch:
- assert image, "Can't scale by because no image is selected"
- width = int(image.width * scale_by)
- height = int(image.height * scale_by)
- assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
- p = StableDiffusionProcessingImg2Img(
- sd_model=shared.sd_model,
- outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
- outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
- prompt=prompt,
- negative_prompt=negative_prompt,
- styles=prompt_styles,
- batch_size=batch_size,
- n_iter=n_iter,
- cfg_scale=cfg_scale,
- width=width,
- height=height,
- init_images=[image],
- mask=mask,
- mask_blur=mask_blur,
- inpainting_fill=inpainting_fill,
- resize_mode=resize_mode,
- denoising_strength=denoising_strength,
- image_cfg_scale=image_cfg_scale,
- inpaint_full_res=inpaint_full_res,
- inpaint_full_res_padding=inpaint_full_res_padding,
- inpainting_mask_invert=inpainting_mask_invert,
- override_settings=override_settings,
- )
- p.scripts = modules.scripts.scripts_img2img
- p.script_args = args
- p.user = request.username
- if shared.opts.enable_console_prompts:
- print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
- with closing(p):
- if is_batch:
- assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
- processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
- if processed is None:
- processed = Processed(p, [], p.seed, "")
- else:
- processed = modules.scripts.scripts_img2img.run(p, *args)
- if processed is None:
- processed = process_images(p)
- shared.total_tqdm.clear()
- generation_info_js = processed.js()
- if opts.samples_log_stdout:
- print(generation_info_js)
- if opts.do_not_show_images:
- processed.images = []
- return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")
|