ui.py 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. import html
  2. import gradio as gr
  3. import modules.textual_inversion.textual_inversion
  4. from modules import sd_hijack, shared
  5. def create_embedding(name, initialization_text, nvpt, overwrite_old):
  6. filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
  7. sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
  8. return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
  9. def train_embedding(*args):
  10. assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
  11. apply_optimizations = shared.opts.training_xattention_optimizations
  12. try:
  13. if not apply_optimizations:
  14. sd_hijack.undo_optimizations()
  15. embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
  16. res = f"""
  17. Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
  18. Embedding saved to {html.escape(filename)}
  19. """
  20. return res, ""
  21. except Exception:
  22. raise
  23. finally:
  24. if not apply_optimizations:
  25. sd_hijack.apply_optimizations()