sd_vae.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. import os
  2. import collections
  3. from dataclasses import dataclass
  4. from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks, lowvram, sd_hijack, hashes
  5. import glob
  6. from copy import deepcopy
  7. vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE"))
  8. vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
  9. vae_dict = {}
  10. base_vae = None
  11. loaded_vae_file = None
  12. checkpoint_info = None
  13. checkpoints_loaded = collections.OrderedDict()
  14. def get_loaded_vae_name():
  15. if loaded_vae_file is None:
  16. return None
  17. return os.path.basename(loaded_vae_file)
  18. def get_loaded_vae_hash():
  19. if loaded_vae_file is None:
  20. return None
  21. sha256 = hashes.sha256(loaded_vae_file, 'vae')
  22. return sha256[0:10] if sha256 else None
  23. def get_base_vae(model):
  24. if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
  25. return base_vae
  26. return None
  27. def store_base_vae(model):
  28. global base_vae, checkpoint_info
  29. if checkpoint_info != model.sd_checkpoint_info:
  30. assert not loaded_vae_file, "Trying to store non-base VAE!"
  31. base_vae = deepcopy(model.first_stage_model.state_dict())
  32. checkpoint_info = model.sd_checkpoint_info
  33. def delete_base_vae():
  34. global base_vae, checkpoint_info
  35. base_vae = None
  36. checkpoint_info = None
  37. def restore_base_vae(model):
  38. global loaded_vae_file
  39. if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
  40. print("Restoring base VAE")
  41. _load_vae_dict(model, base_vae)
  42. loaded_vae_file = None
  43. delete_base_vae()
  44. def get_filename(filepath):
  45. return os.path.basename(filepath)
  46. def refresh_vae_list():
  47. vae_dict.clear()
  48. paths = [
  49. os.path.join(sd_models.model_path, '**/*.vae.ckpt'),
  50. os.path.join(sd_models.model_path, '**/*.vae.pt'),
  51. os.path.join(sd_models.model_path, '**/*.vae.safetensors'),
  52. os.path.join(vae_path, '**/*.ckpt'),
  53. os.path.join(vae_path, '**/*.pt'),
  54. os.path.join(vae_path, '**/*.safetensors'),
  55. ]
  56. if shared.cmd_opts.ckpt_dir is not None and os.path.isdir(shared.cmd_opts.ckpt_dir):
  57. paths += [
  58. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.ckpt'),
  59. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.pt'),
  60. os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.safetensors'),
  61. ]
  62. if shared.cmd_opts.vae_dir is not None and os.path.isdir(shared.cmd_opts.vae_dir):
  63. paths += [
  64. os.path.join(shared.cmd_opts.vae_dir, '**/*.ckpt'),
  65. os.path.join(shared.cmd_opts.vae_dir, '**/*.pt'),
  66. os.path.join(shared.cmd_opts.vae_dir, '**/*.safetensors'),
  67. ]
  68. candidates = []
  69. for path in paths:
  70. candidates += glob.iglob(path, recursive=True)
  71. for filepath in candidates:
  72. name = get_filename(filepath)
  73. vae_dict[name] = filepath
  74. vae_dict.update(dict(sorted(vae_dict.items(), key=lambda item: shared.natural_sort_key(item[0]))))
  75. def find_vae_near_checkpoint(checkpoint_file):
  76. checkpoint_path = os.path.basename(checkpoint_file).rsplit('.', 1)[0]
  77. for vae_file in vae_dict.values():
  78. if os.path.basename(vae_file).startswith(checkpoint_path):
  79. return vae_file
  80. return None
  81. @dataclass
  82. class VaeResolution:
  83. vae: str = None
  84. source: str = None
  85. resolved: bool = True
  86. def tuple(self):
  87. return self.vae, self.source
  88. def is_automatic():
  89. return shared.opts.sd_vae in {"Automatic", "auto"} # "auto" for people with old config
  90. def resolve_vae_from_setting() -> VaeResolution:
  91. if shared.opts.sd_vae == "None":
  92. return VaeResolution()
  93. vae_from_options = vae_dict.get(shared.opts.sd_vae, None)
  94. if vae_from_options is not None:
  95. return VaeResolution(vae_from_options, 'specified in settings')
  96. if not is_automatic():
  97. print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead")
  98. return VaeResolution(resolved=False)
  99. def resolve_vae_from_user_metadata(checkpoint_file) -> VaeResolution:
  100. metadata = extra_networks.get_user_metadata(checkpoint_file)
  101. vae_metadata = metadata.get("vae", None)
  102. if vae_metadata is not None and vae_metadata != "Automatic":
  103. if vae_metadata == "None":
  104. return VaeResolution()
  105. vae_from_metadata = vae_dict.get(vae_metadata, None)
  106. if vae_from_metadata is not None:
  107. return VaeResolution(vae_from_metadata, "from user metadata")
  108. return VaeResolution(resolved=False)
  109. def resolve_vae_near_checkpoint(checkpoint_file) -> VaeResolution:
  110. vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
  111. if vae_near_checkpoint is not None and (not shared.opts.sd_vae_overrides_per_model_preferences or is_automatic()):
  112. return VaeResolution(vae_near_checkpoint, 'found near the checkpoint')
  113. return VaeResolution(resolved=False)
  114. def resolve_vae(checkpoint_file) -> VaeResolution:
  115. if shared.cmd_opts.vae_path is not None:
  116. return VaeResolution(shared.cmd_opts.vae_path, 'from commandline argument')
  117. if shared.opts.sd_vae_overrides_per_model_preferences and not is_automatic():
  118. return resolve_vae_from_setting()
  119. res = resolve_vae_from_user_metadata(checkpoint_file)
  120. if res.resolved:
  121. return res
  122. res = resolve_vae_near_checkpoint(checkpoint_file)
  123. if res.resolved:
  124. return res
  125. res = resolve_vae_from_setting()
  126. return res
  127. def load_vae_dict(filename, map_location):
  128. vae_ckpt = sd_models.read_state_dict(filename, map_location=map_location)
  129. vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
  130. return vae_dict_1
  131. def load_vae(model, vae_file=None, vae_source="from unknown source"):
  132. global vae_dict, base_vae, loaded_vae_file
  133. # save_settings = False
  134. cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
  135. if vae_file:
  136. if cache_enabled and vae_file in checkpoints_loaded:
  137. # use vae checkpoint cache
  138. print(f"Loading VAE weights {vae_source}: cached {get_filename(vae_file)}")
  139. store_base_vae(model)
  140. _load_vae_dict(model, checkpoints_loaded[vae_file])
  141. else:
  142. assert os.path.isfile(vae_file), f"VAE {vae_source} doesn't exist: {vae_file}"
  143. print(f"Loading VAE weights {vae_source}: {vae_file}")
  144. store_base_vae(model)
  145. vae_dict_1 = load_vae_dict(vae_file, map_location=shared.weight_load_location)
  146. _load_vae_dict(model, vae_dict_1)
  147. if cache_enabled:
  148. # cache newly loaded vae
  149. checkpoints_loaded[vae_file] = vae_dict_1.copy()
  150. # clean up cache if limit is reached
  151. if cache_enabled:
  152. while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
  153. checkpoints_loaded.popitem(last=False) # LRU
  154. # If vae used is not in dict, update it
  155. # It will be removed on refresh though
  156. vae_opt = get_filename(vae_file)
  157. if vae_opt not in vae_dict:
  158. vae_dict[vae_opt] = vae_file
  159. elif loaded_vae_file:
  160. restore_base_vae(model)
  161. loaded_vae_file = vae_file
  162. model.base_vae = base_vae
  163. model.loaded_vae_file = loaded_vae_file
  164. # don't call this from outside
  165. def _load_vae_dict(model, vae_dict_1):
  166. model.first_stage_model.load_state_dict(vae_dict_1)
  167. model.first_stage_model.to(devices.dtype_vae)
  168. def clear_loaded_vae():
  169. global loaded_vae_file
  170. loaded_vae_file = None
  171. unspecified = object()
  172. def reload_vae_weights(sd_model=None, vae_file=unspecified):
  173. if not sd_model:
  174. sd_model = shared.sd_model
  175. checkpoint_info = sd_model.sd_checkpoint_info
  176. checkpoint_file = checkpoint_info.filename
  177. if vae_file == unspecified:
  178. vae_file, vae_source = resolve_vae(checkpoint_file).tuple()
  179. else:
  180. vae_source = "from function argument"
  181. if loaded_vae_file == vae_file:
  182. return
  183. if sd_model.lowvram:
  184. lowvram.send_everything_to_cpu()
  185. else:
  186. sd_model.to(devices.cpu)
  187. sd_hijack.model_hijack.undo_hijack(sd_model)
  188. load_vae(sd_model, vae_file, vae_source)
  189. sd_hijack.model_hijack.hijack(sd_model)
  190. if not sd_model.lowvram:
  191. sd_model.to(devices.device)
  192. script_callbacks.model_loaded_callback(sd_model)
  193. print("VAE weights loaded.")
  194. return sd_model