1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import torch
- import tqdm
- import k_diffusion.sampling
- @torch.no_grad()
- def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
- """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
- Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
- If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
- """
- extra_args = {} if extra_args is None else extra_args
- s_in = x.new_ones([x.shape[0]])
- step_id = 0
- from k_diffusion.sampling import to_d, get_sigmas_karras
- def heun_step(x, old_sigma, new_sigma, second_order=True):
- nonlocal step_id
- denoised = model(x, old_sigma * s_in, **extra_args)
- d = to_d(x, old_sigma, denoised)
- if callback is not None:
- callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
- dt = new_sigma - old_sigma
- if new_sigma == 0 or not second_order:
- # Euler method
- x = x + d * dt
- else:
- # Heun's method
- x_2 = x + d * dt
- denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
- d_2 = to_d(x_2, new_sigma, denoised_2)
- d_prime = (d + d_2) / 2
- x = x + d_prime * dt
- step_id += 1
- return x
- steps = sigmas.shape[0] - 1
- if restart_list is None:
- if steps >= 20:
- restart_steps = 9
- restart_times = 1
- if steps >= 36:
- restart_steps = steps // 4
- restart_times = 2
- sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
- restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
- else:
- restart_list = {}
- restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
- step_list = []
- for i in range(len(sigmas) - 1):
- step_list.append((sigmas[i], sigmas[i + 1]))
- if i + 1 in restart_list:
- restart_steps, restart_times, restart_max = restart_list[i + 1]
- min_idx = i + 1
- max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
- if max_idx < min_idx:
- sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
- while restart_times > 0:
- restart_times -= 1
- step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:]))
- last_sigma = None
- for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
- if last_sigma is None:
- last_sigma = old_sigma
- elif last_sigma < old_sigma:
- x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
- x = heun_step(x, old_sigma, new_sigma)
- last_sigma = new_sigma
- return x
|