12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import glob
- import os
- import sys
- import traceback
- import torch
- from ldm.util import default
- from modules import devices, shared
- import torch
- from torch import einsum
- from einops import rearrange, repeat
- class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict):
- super().__init__()
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
- self.load_state_dict(state_dict, strict=True)
- self.to(devices.device)
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
- class Hypernetwork:
- filename = None
- name = None
- def __init__(self, filename):
- self.filename = filename
- self.name = os.path.splitext(os.path.basename(filename))[0]
- self.layers = {}
- state_dict = torch.load(filename, map_location='cpu')
- for size, sd in state_dict.items():
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
- def load_hypernetworks(path):
- res = {}
- for filename in glob.iglob(path + '**/*.pt', recursive=True):
- try:
- hn = Hypernetwork(filename)
- res[hn.name] = hn
- except Exception:
- print(f"Error loading hypernetwork {filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- return res
- def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
- q = self.to_q(x)
- context = default(context, x)
- hypernetwork = shared.selected_hypernetwork()
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
- if hypernetwork_layers is not None:
- k = self.to_k(hypernetwork_layers[0](context))
- v = self.to_v(hypernetwork_layers[1](context))
- else:
- k = self.to_k(context)
- v = self.to_v(context)
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
|