123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- import os.path
- import sys
- import traceback
- import PIL.Image
- import numpy as np
- import torch
- from tqdm import tqdm
- from basicsr.utils.download_util import load_file_from_url
- import modules.upscaler
- from modules import devices, modelloader
- from scunet_model_arch import SCUNet as net
- from modules.shared import opts
- class UpscalerScuNET(modules.upscaler.Upscaler):
- def __init__(self, dirname):
- self.name = "ScuNET"
- self.model_name = "ScuNET GAN"
- self.model_name2 = "ScuNET PSNR"
- self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
- self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
- self.user_path = dirname
- super().__init__()
- model_paths = self.find_models(ext_filter=[".pth"])
- scalers = []
- add_model2 = True
- for file in model_paths:
- if "http" in file:
- name = self.model_name
- else:
- name = modelloader.friendly_name(file)
- if name == self.model_name2 or file == self.model_url2:
- add_model2 = False
- try:
- scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
- scalers.append(scaler_data)
- except Exception:
- print(f"Error loading ScuNET model: {file}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- if add_model2:
- scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
- scalers.append(scaler_data2)
- self.scalers = scalers
- @staticmethod
- @torch.no_grad()
- def tiled_inference(img, model):
- # test the image tile by tile
- h, w = img.shape[2:]
- tile = opts.SCUNET_tile
- tile_overlap = opts.SCUNET_tile_overlap
- if tile == 0:
- return model(img)
- device = devices.get_device_for('scunet')
- assert tile % 8 == 0, "tile size should be a multiple of window_size"
- sf = 1
- stride = tile - tile_overlap
- h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
- w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
- E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
- W = torch.zeros_like(E, dtype=devices.dtype, device=device)
- with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
- for h_idx in h_idx_list:
- for w_idx in w_idx_list:
- in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
- out_patch = model(in_patch)
- out_patch_mask = torch.ones_like(out_patch)
- E[
- ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
- ].add_(out_patch)
- W[
- ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
- ].add_(out_patch_mask)
- pbar.update(1)
- output = E.div_(W)
- return output
- def do_upscale(self, img: PIL.Image.Image, selected_file):
- torch.cuda.empty_cache()
- model = self.load_model(selected_file)
- if model is None:
- print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
- return img
- device = devices.get_device_for('scunet')
- tile = opts.SCUNET_tile
- h, w = img.height, img.width
- np_img = np.array(img)
- np_img = np_img[:, :, ::-1] # RGB to BGR
- np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
- torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
- if tile > h or tile > w:
- _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
- _img[:, :, :h, :w] = torch_img # pad image
- torch_img = _img
- torch_output = self.tiled_inference(torch_img, model).squeeze(0)
- torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
- np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
- del torch_img, torch_output
- torch.cuda.empty_cache()
- output = np_output.transpose((1, 2, 0)) # CHW to HWC
- output = output[:, :, ::-1] # BGR to RGB
- return PIL.Image.fromarray((output * 255).astype(np.uint8))
- def load_model(self, path: str):
- device = devices.get_device_for('scunet')
- if "http" in path:
- filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
- progress=True)
- else:
- filename = path
- if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
- print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
- return None
- model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
- model.load_state_dict(torch.load(filename), strict=True)
- model.eval()
- for k, v in model.named_parameters():
- v.requires_grad = False
- model = model.to(device)
- return model
|