123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- import argparse
- import datetime
- import json
- import os
- import sys
- import gradio as gr
- import tqdm
- import modules.artists
- import modules.interrogate
- import modules.memmon
- import modules.sd_models
- import modules.styles
- import modules.devices as devices
- from modules import sd_samplers, sd_models
- from modules.hypernetworks import hypernetwork
- from modules.paths import models_path, script_path, sd_path
- sd_model_file = os.path.join(script_path, 'model.ckpt')
- default_sd_model_file = sd_model_file
- parser = argparse.ArgumentParser()
- parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
- parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
- parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
- parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
- parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
- parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
- parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
- parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
- parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
- parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
- parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
- parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
- parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
- parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
- parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
- parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
- parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
- parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
- parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
- parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
- parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
- parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
- parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
- parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
- parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
- parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(models_path, 'ScuNET'))
- parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR'))
- parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
- parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
- parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
- parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
- parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
- parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
- parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
- parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
- parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
- parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
- parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
- parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
- parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
- parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
- parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
- parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
- parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
- parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
- parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
- parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
- parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
- parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
- parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
- parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
- parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
- parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
- cmd_opts = parser.parse_args()
- devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
- (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
- device = devices.device
- weight_load_location = None if cmd_opts.lowram else "cpu"
- batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
- parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
- xformers_available = False
- config_filename = cmd_opts.ui_settings_file
- os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
- hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
- loaded_hypernetwork = None
- def reload_hypernetworks():
- global hypernetworks
- hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
- hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
- class State:
- skipped = False
- interrupted = False
- job = ""
- job_no = 0
- job_count = 0
- job_timestamp = '0'
- sampling_step = 0
- sampling_steps = 0
- current_latent = None
- current_image = None
- current_image_sampling_step = 0
- textinfo = None
- def skip(self):
- self.skipped = True
- def interrupt(self):
- self.interrupted = True
- def nextjob(self):
- self.job_no += 1
- self.sampling_step = 0
- self.current_image_sampling_step = 0
-
- def get_job_timestamp(self):
- return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
- state = State()
- artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv'))
- styles_filename = cmd_opts.styles_file
- prompt_styles = modules.styles.StyleDatabase(styles_filename)
- interrogator = modules.interrogate.InterrogateModels("interrogate")
- face_restorers = []
- def realesrgan_models_names():
- import modules.realesrgan_model
- return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
- class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None):
- self.default = default
- self.label = label
- self.component = component
- self.component_args = component_args
- self.onchange = onchange
- self.section = None
- self.refresh = refresh
- def options_section(section_identifier, options_dict):
- for k, v in options_dict.items():
- v.section = section_identifier
- return options_dict
- hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
- options_templates = {}
- options_templates.update(options_section(('saving-images', "Saving images/grids"), {
- "samples_save": OptionInfo(True, "Always save all generated images"),
- "samples_format": OptionInfo('png', 'File format for images'),
- "samples_filename_pattern": OptionInfo("", "Images filename pattern"),
- "grid_save": OptionInfo(True, "Always save all generated image grids"),
- "grid_format": OptionInfo('png', 'File format for grids'),
- "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
- "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
- "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
- "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
- "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
- "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
- "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
- "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
- "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
- "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
- "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
- "do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
- }))
- options_templates.update(options_section(('saving-paths', "Paths for saving"), {
- "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
- "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
- "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
- "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
- "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
- "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
- "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
- "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
- }))
- options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
- "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
- "grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
- "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
- "directories_filename_pattern": OptionInfo("", "Directory name pattern"),
- "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
- }))
- options_templates.update(options_section(('upscaling', "Upscaling"), {
- "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
- "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
- "realesrgan_enabled_models": OptionInfo(["R-ESRGAN x4+", "R-ESRGAN x4+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
- "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
- "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
- "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
- "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
- "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"),
- }))
- options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
- "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
- "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
- }))
- options_templates.update(options_section(('system', "System"), {
- "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
- "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
- "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
- }))
- options_templates.update(options_section(('training', "Training"), {
- "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
- "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
- "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
- "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
- "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
- }))
- options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
- "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
- "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
- "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
- "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
- "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
- "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
- "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
- "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
- "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
- "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
- "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
- 'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
- "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
- }))
- options_templates.update(options_section(('interrogate', "Interrogate Options"), {
- "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
- "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
- "interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
- "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
- "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
- "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
- "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
- "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
- "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
- "deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
- "deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
- }))
- options_templates.update(options_section(('ui', "User interface"), {
- "show_progressbar": OptionInfo(True, "Show progressbar"),
- "show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
- "return_grid": OptionInfo(True, "Show grid in results for web"),
- "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
- "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
- "add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
- "font": OptionInfo("", "Font for image grids that have text"),
- "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
- "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
- "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
- 'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
- }))
- options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
- "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
- 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
- }))
- class Options:
- data = None
- data_labels = options_templates
- typemap = {int: float}
- def __init__(self):
- self.data = {k: v.default for k, v in self.data_labels.items()}
- def __setattr__(self, key, value):
- if self.data is not None:
- if key in self.data:
- self.data[key] = value
- return super(Options, self).__setattr__(key, value)
- def __getattr__(self, item):
- if self.data is not None:
- if item in self.data:
- return self.data[item]
- if item in self.data_labels:
- return self.data_labels[item].default
- return super(Options, self).__getattribute__(item)
- def save(self, filename):
- with open(filename, "w", encoding="utf8") as file:
- json.dump(self.data, file)
- def same_type(self, x, y):
- if x is None or y is None:
- return True
- type_x = self.typemap.get(type(x), type(x))
- type_y = self.typemap.get(type(y), type(y))
- return type_x == type_y
- def load(self, filename):
- with open(filename, "r", encoding="utf8") as file:
- self.data = json.load(file)
- bad_settings = 0
- for k, v in self.data.items():
- info = self.data_labels.get(k, None)
- if info is not None and not self.same_type(info.default, v):
- print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
- bad_settings += 1
- if bad_settings > 0:
- print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
- def onchange(self, key, func):
- item = self.data_labels.get(key)
- item.onchange = func
- func()
- def dumpjson(self):
- d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
- return json.dumps(d)
- opts = Options()
- if os.path.exists(config_filename):
- opts.load(config_filename)
- sd_upscalers = []
- sd_model = None
- progress_print_out = sys.stdout
- class TotalTQDM:
- def __init__(self):
- self._tqdm = None
- def reset(self):
- self._tqdm = tqdm.tqdm(
- desc="Total progress",
- total=state.job_count * state.sampling_steps,
- position=1,
- file=progress_print_out
- )
- def update(self):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.update()
- def updateTotal(self, new_total):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.total=new_total
- def clear(self):
- if self._tqdm is not None:
- self._tqdm.close()
- self._tqdm = None
- total_tqdm = TotalTQDM()
- mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
- mem_mon.start()
|