textual_inversion.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704
  1. import os
  2. from collections import namedtuple
  3. from contextlib import closing
  4. import torch
  5. import tqdm
  6. import html
  7. import datetime
  8. import csv
  9. import safetensors.torch
  10. import numpy as np
  11. from PIL import Image, PngImagePlugin
  12. from torch.utils.tensorboard import SummaryWriter
  13. from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
  14. import modules.textual_inversion.dataset
  15. from modules.textual_inversion.learn_schedule import LearnRateScheduler
  16. from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
  17. from modules.textual_inversion.logging import save_settings_to_file
  18. TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
  19. textual_inversion_templates = {}
  20. def list_textual_inversion_templates():
  21. textual_inversion_templates.clear()
  22. for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
  23. for fn in fns:
  24. path = os.path.join(root, fn)
  25. textual_inversion_templates[fn] = TextualInversionTemplate(fn, path)
  26. return textual_inversion_templates
  27. class Embedding:
  28. def __init__(self, vec, name, step=None):
  29. self.vec = vec
  30. self.name = name
  31. self.step = step
  32. self.shape = None
  33. self.vectors = 0
  34. self.cached_checksum = None
  35. self.sd_checkpoint = None
  36. self.sd_checkpoint_name = None
  37. self.optimizer_state_dict = None
  38. self.filename = None
  39. self.hash = None
  40. self.shorthash = None
  41. def save(self, filename):
  42. embedding_data = {
  43. "string_to_token": {"*": 265},
  44. "string_to_param": {"*": self.vec},
  45. "name": self.name,
  46. "step": self.step,
  47. "sd_checkpoint": self.sd_checkpoint,
  48. "sd_checkpoint_name": self.sd_checkpoint_name,
  49. }
  50. torch.save(embedding_data, filename)
  51. if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
  52. optimizer_saved_dict = {
  53. 'hash': self.checksum(),
  54. 'optimizer_state_dict': self.optimizer_state_dict,
  55. }
  56. torch.save(optimizer_saved_dict, f"{filename}.optim")
  57. def checksum(self):
  58. if self.cached_checksum is not None:
  59. return self.cached_checksum
  60. def const_hash(a):
  61. r = 0
  62. for v in a:
  63. r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
  64. return r
  65. self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
  66. return self.cached_checksum
  67. def set_hash(self, v):
  68. self.hash = v
  69. self.shorthash = self.hash[0:12]
  70. class DirWithTextualInversionEmbeddings:
  71. def __init__(self, path):
  72. self.path = path
  73. self.mtime = None
  74. def has_changed(self):
  75. if not os.path.isdir(self.path):
  76. return False
  77. mt = os.path.getmtime(self.path)
  78. if self.mtime is None or mt > self.mtime:
  79. return True
  80. def update(self):
  81. if not os.path.isdir(self.path):
  82. return
  83. self.mtime = os.path.getmtime(self.path)
  84. class EmbeddingDatabase:
  85. def __init__(self):
  86. self.ids_lookup = {}
  87. self.word_embeddings = {}
  88. self.skipped_embeddings = {}
  89. self.expected_shape = -1
  90. self.embedding_dirs = {}
  91. self.previously_displayed_embeddings = ()
  92. def add_embedding_dir(self, path):
  93. self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
  94. def clear_embedding_dirs(self):
  95. self.embedding_dirs.clear()
  96. def register_embedding(self, embedding, model):
  97. return self.register_embedding_by_name(embedding, model, embedding.name)
  98. def register_embedding_by_name(self, embedding, model, name):
  99. ids = model.cond_stage_model.tokenize([name])[0]
  100. first_id = ids[0]
  101. if first_id not in self.ids_lookup:
  102. self.ids_lookup[first_id] = []
  103. if name in self.word_embeddings:
  104. # remove old one from the lookup list
  105. lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name]
  106. else:
  107. lookup = self.ids_lookup[first_id]
  108. if embedding is not None:
  109. lookup += [(ids, embedding)]
  110. self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
  111. if embedding is None:
  112. # unregister embedding with specified name
  113. if name in self.word_embeddings:
  114. del self.word_embeddings[name]
  115. if len(self.ids_lookup[first_id])==0:
  116. del self.ids_lookup[first_id]
  117. return None
  118. self.word_embeddings[name] = embedding
  119. return embedding
  120. def get_expected_shape(self):
  121. # workaround
  122. if devices.npu_specific.has_npu:
  123. import torch
  124. torch.npu.set_device(0)
  125. vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
  126. return vec.shape[1]
  127. def load_from_file(self, path, filename):
  128. name, ext = os.path.splitext(filename)
  129. ext = ext.upper()
  130. if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
  131. _, second_ext = os.path.splitext(name)
  132. if second_ext.upper() == '.PREVIEW':
  133. return
  134. embed_image = Image.open(path)
  135. if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
  136. data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
  137. name = data.get('name', name)
  138. else:
  139. data = extract_image_data_embed(embed_image)
  140. if data:
  141. name = data.get('name', name)
  142. else:
  143. # if data is None, means this is not an embeding, just a preview image
  144. return
  145. elif ext in ['.BIN', '.PT']:
  146. data = torch.load(path, map_location="cpu")
  147. elif ext in ['.SAFETENSORS']:
  148. data = safetensors.torch.load_file(path, device="cpu")
  149. else:
  150. return
  151. embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
  152. if self.expected_shape == -1 or self.expected_shape == embedding.shape:
  153. self.register_embedding(embedding, shared.sd_model)
  154. else:
  155. self.skipped_embeddings[name] = embedding
  156. def load_from_dir(self, embdir):
  157. if not os.path.isdir(embdir.path):
  158. return
  159. for root, _, fns in os.walk(embdir.path, followlinks=True):
  160. for fn in fns:
  161. try:
  162. fullfn = os.path.join(root, fn)
  163. if os.stat(fullfn).st_size == 0:
  164. continue
  165. self.load_from_file(fullfn, fn)
  166. except Exception:
  167. errors.report(f"Error loading embedding {fn}", exc_info=True)
  168. continue
  169. def load_textual_inversion_embeddings(self, force_reload=False):
  170. if not force_reload:
  171. need_reload = False
  172. for embdir in self.embedding_dirs.values():
  173. if embdir.has_changed():
  174. need_reload = True
  175. break
  176. if not need_reload:
  177. return
  178. self.ids_lookup.clear()
  179. self.word_embeddings.clear()
  180. self.skipped_embeddings.clear()
  181. self.expected_shape = self.get_expected_shape()
  182. for embdir in self.embedding_dirs.values():
  183. self.load_from_dir(embdir)
  184. embdir.update()
  185. # re-sort word_embeddings because load_from_dir may not load in alphabetic order.
  186. # using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
  187. sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
  188. self.word_embeddings.clear()
  189. self.word_embeddings.update(sorted_word_embeddings)
  190. displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
  191. if shared.opts.textual_inversion_print_at_load and self.previously_displayed_embeddings != displayed_embeddings:
  192. self.previously_displayed_embeddings = displayed_embeddings
  193. print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
  194. if self.skipped_embeddings:
  195. print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
  196. def find_embedding_at_position(self, tokens, offset):
  197. token = tokens[offset]
  198. possible_matches = self.ids_lookup.get(token, None)
  199. if possible_matches is None:
  200. return None, None
  201. for ids, embedding in possible_matches:
  202. if tokens[offset:offset + len(ids)] == ids:
  203. return embedding, len(ids)
  204. return None, None
  205. def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
  206. cond_model = shared.sd_model.cond_stage_model
  207. with devices.autocast():
  208. cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
  209. #cond_model expects at least some text, so we provide '*' as backup.
  210. embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
  211. vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
  212. #Only copy if we provided an init_text, otherwise keep vectors as zeros
  213. if init_text:
  214. for i in range(num_vectors_per_token):
  215. vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
  216. # Remove illegal characters from name.
  217. name = "".join( x for x in name if (x.isalnum() or x in "._- "))
  218. fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
  219. if not overwrite_old:
  220. assert not os.path.exists(fn), f"file {fn} already exists"
  221. embedding = Embedding(vec, name)
  222. embedding.step = 0
  223. embedding.save(fn)
  224. return fn
  225. def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
  226. if 'string_to_param' in data: # textual inversion embeddings
  227. param_dict = data['string_to_param']
  228. param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
  229. assert len(param_dict) == 1, 'embedding file has multiple terms in it'
  230. emb = next(iter(param_dict.items()))[1]
  231. vec = emb.detach().to(devices.device, dtype=torch.float32)
  232. shape = vec.shape[-1]
  233. vectors = vec.shape[0]
  234. elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
  235. vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
  236. shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
  237. vectors = data['clip_g'].shape[0]
  238. elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
  239. assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
  240. emb = next(iter(data.values()))
  241. if len(emb.shape) == 1:
  242. emb = emb.unsqueeze(0)
  243. vec = emb.detach().to(devices.device, dtype=torch.float32)
  244. shape = vec.shape[-1]
  245. vectors = vec.shape[0]
  246. else:
  247. raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
  248. embedding = Embedding(vec, name)
  249. embedding.step = data.get('step', None)
  250. embedding.sd_checkpoint = data.get('sd_checkpoint', None)
  251. embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
  252. embedding.vectors = vectors
  253. embedding.shape = shape
  254. if filepath:
  255. embedding.filename = filepath
  256. embedding.set_hash(hashes.sha256(filepath, "textual_inversion/" + name) or '')
  257. return embedding
  258. def write_loss(log_directory, filename, step, epoch_len, values):
  259. if shared.opts.training_write_csv_every == 0:
  260. return
  261. if step % shared.opts.training_write_csv_every != 0:
  262. return
  263. write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
  264. with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
  265. csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
  266. if write_csv_header:
  267. csv_writer.writeheader()
  268. epoch = (step - 1) // epoch_len
  269. epoch_step = (step - 1) % epoch_len
  270. csv_writer.writerow({
  271. "step": step,
  272. "epoch": epoch,
  273. "epoch_step": epoch_step,
  274. **values,
  275. })
  276. def tensorboard_setup(log_directory):
  277. os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
  278. return SummaryWriter(
  279. log_dir=os.path.join(log_directory, "tensorboard"),
  280. flush_secs=shared.opts.training_tensorboard_flush_every)
  281. def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
  282. tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
  283. tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
  284. tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
  285. tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
  286. def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
  287. tensorboard_writer.add_scalar(tag=tag,
  288. scalar_value=value, global_step=step)
  289. def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
  290. # Convert a pil image to a torch tensor
  291. img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
  292. img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
  293. len(pil_image.getbands()))
  294. img_tensor = img_tensor.permute((2, 0, 1))
  295. tensorboard_writer.add_image(tag, img_tensor, global_step=step)
  296. def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
  297. assert model_name, f"{name} not selected"
  298. assert learn_rate, "Learning rate is empty or 0"
  299. assert isinstance(batch_size, int), "Batch size must be integer"
  300. assert batch_size > 0, "Batch size must be positive"
  301. assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
  302. assert gradient_step > 0, "Gradient accumulation step must be positive"
  303. assert data_root, "Dataset directory is empty"
  304. assert os.path.isdir(data_root), "Dataset directory doesn't exist"
  305. assert os.listdir(data_root), "Dataset directory is empty"
  306. assert template_filename, "Prompt template file not selected"
  307. assert template_file, f"Prompt template file {template_filename} not found"
  308. assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist"
  309. assert steps, "Max steps is empty or 0"
  310. assert isinstance(steps, int), "Max steps must be integer"
  311. assert steps > 0, "Max steps must be positive"
  312. assert isinstance(save_model_every, int), "Save {name} must be integer"
  313. assert save_model_every >= 0, "Save {name} must be positive or 0"
  314. assert isinstance(create_image_every, int), "Create image must be integer"
  315. assert create_image_every >= 0, "Create image must be positive or 0"
  316. if save_model_every or create_image_every:
  317. assert log_directory, "Log directory is empty"
  318. def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_name, preview_cfg_scale, preview_seed, preview_width, preview_height):
  319. from modules import processing
  320. save_embedding_every = save_embedding_every or 0
  321. create_image_every = create_image_every or 0
  322. template_file = textual_inversion_templates.get(template_filename, None)
  323. validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
  324. template_file = template_file.path
  325. shared.state.job = "train-embedding"
  326. shared.state.textinfo = "Initializing textual inversion training..."
  327. shared.state.job_count = steps
  328. filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
  329. log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
  330. unload = shared.opts.unload_models_when_training
  331. if save_embedding_every > 0:
  332. embedding_dir = os.path.join(log_directory, "embeddings")
  333. os.makedirs(embedding_dir, exist_ok=True)
  334. else:
  335. embedding_dir = None
  336. if create_image_every > 0:
  337. images_dir = os.path.join(log_directory, "images")
  338. os.makedirs(images_dir, exist_ok=True)
  339. else:
  340. images_dir = None
  341. if create_image_every > 0 and save_image_with_stored_embedding:
  342. images_embeds_dir = os.path.join(log_directory, "image_embeddings")
  343. os.makedirs(images_embeds_dir, exist_ok=True)
  344. else:
  345. images_embeds_dir = None
  346. hijack = sd_hijack.model_hijack
  347. embedding = hijack.embedding_db.word_embeddings[embedding_name]
  348. checkpoint = sd_models.select_checkpoint()
  349. initial_step = embedding.step or 0
  350. if initial_step >= steps:
  351. shared.state.textinfo = "Model has already been trained beyond specified max steps"
  352. return embedding, filename
  353. scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
  354. clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
  355. torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
  356. None
  357. if clip_grad:
  358. clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
  359. # dataset loading may take a while, so input validations and early returns should be done before this
  360. shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
  361. old_parallel_processing_allowed = shared.parallel_processing_allowed
  362. if shared.opts.training_enable_tensorboard:
  363. tensorboard_writer = tensorboard_setup(log_directory)
  364. pin_memory = shared.opts.pin_memory
  365. ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
  366. if shared.opts.save_training_settings_to_txt:
  367. save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
  368. latent_sampling_method = ds.latent_sampling_method
  369. dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
  370. if unload:
  371. shared.parallel_processing_allowed = False
  372. shared.sd_model.first_stage_model.to(devices.cpu)
  373. embedding.vec.requires_grad = True
  374. optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
  375. if shared.opts.save_optimizer_state:
  376. optimizer_state_dict = None
  377. if os.path.exists(f"{filename}.optim"):
  378. optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
  379. if embedding.checksum() == optimizer_saved_dict.get('hash', None):
  380. optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
  381. if optimizer_state_dict is not None:
  382. optimizer.load_state_dict(optimizer_state_dict)
  383. print("Loaded existing optimizer from checkpoint")
  384. else:
  385. print("No saved optimizer exists in checkpoint")
  386. scaler = torch.cuda.amp.GradScaler()
  387. batch_size = ds.batch_size
  388. gradient_step = ds.gradient_step
  389. # n steps = batch_size * gradient_step * n image processed
  390. steps_per_epoch = len(ds) // batch_size // gradient_step
  391. max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
  392. loss_step = 0
  393. _loss_step = 0 #internal
  394. last_saved_file = "<none>"
  395. last_saved_image = "<none>"
  396. forced_filename = "<none>"
  397. embedding_yet_to_be_embedded = False
  398. is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  399. img_c = None
  400. pbar = tqdm.tqdm(total=steps - initial_step)
  401. try:
  402. sd_hijack_checkpoint.add()
  403. for _ in range((steps-initial_step) * gradient_step):
  404. if scheduler.finished:
  405. break
  406. if shared.state.interrupted:
  407. break
  408. for j, batch in enumerate(dl):
  409. # works as a drop_last=True for gradient accumulation
  410. if j == max_steps_per_epoch:
  411. break
  412. scheduler.apply(optimizer, embedding.step)
  413. if scheduler.finished:
  414. break
  415. if shared.state.interrupted:
  416. break
  417. if clip_grad:
  418. clip_grad_sched.step(embedding.step)
  419. with devices.autocast():
  420. x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
  421. if use_weight:
  422. w = batch.weight.to(devices.device, non_blocking=pin_memory)
  423. c = shared.sd_model.cond_stage_model(batch.cond_text)
  424. if is_training_inpainting_model:
  425. if img_c is None:
  426. img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)
  427. cond = {"c_concat": [img_c], "c_crossattn": [c]}
  428. else:
  429. cond = c
  430. if use_weight:
  431. loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
  432. del w
  433. else:
  434. loss = shared.sd_model.forward(x, cond)[0] / gradient_step
  435. del x
  436. _loss_step += loss.item()
  437. scaler.scale(loss).backward()
  438. # go back until we reach gradient accumulation steps
  439. if (j + 1) % gradient_step != 0:
  440. continue
  441. if clip_grad:
  442. clip_grad(embedding.vec, clip_grad_sched.learn_rate)
  443. scaler.step(optimizer)
  444. scaler.update()
  445. embedding.step += 1
  446. pbar.update()
  447. optimizer.zero_grad(set_to_none=True)
  448. loss_step = _loss_step
  449. _loss_step = 0
  450. steps_done = embedding.step + 1
  451. epoch_num = embedding.step // steps_per_epoch
  452. epoch_step = embedding.step % steps_per_epoch
  453. description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
  454. pbar.set_description(description)
  455. if embedding_dir is not None and steps_done % save_embedding_every == 0:
  456. # Before saving, change name to match current checkpoint.
  457. embedding_name_every = f'{embedding_name}-{steps_done}'
  458. last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
  459. save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
  460. embedding_yet_to_be_embedded = True
  461. write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
  462. "loss": f"{loss_step:.7f}",
  463. "learn_rate": scheduler.learn_rate
  464. })
  465. if images_dir is not None and steps_done % create_image_every == 0:
  466. forced_filename = f'{embedding_name}-{steps_done}'
  467. last_saved_image = os.path.join(images_dir, forced_filename)
  468. shared.sd_model.first_stage_model.to(devices.device)
  469. p = processing.StableDiffusionProcessingTxt2Img(
  470. sd_model=shared.sd_model,
  471. do_not_save_grid=True,
  472. do_not_save_samples=True,
  473. do_not_reload_embeddings=True,
  474. )
  475. if preview_from_txt2img:
  476. p.prompt = preview_prompt
  477. p.negative_prompt = preview_negative_prompt
  478. p.steps = preview_steps
  479. p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
  480. p.cfg_scale = preview_cfg_scale
  481. p.seed = preview_seed
  482. p.width = preview_width
  483. p.height = preview_height
  484. else:
  485. p.prompt = batch.cond_text[0]
  486. p.steps = 20
  487. p.width = training_width
  488. p.height = training_height
  489. preview_text = p.prompt
  490. with closing(p):
  491. processed = processing.process_images(p)
  492. image = processed.images[0] if len(processed.images) > 0 else None
  493. if unload:
  494. shared.sd_model.first_stage_model.to(devices.cpu)
  495. if image is not None:
  496. shared.state.assign_current_image(image)
  497. last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
  498. last_saved_image += f", prompt: {preview_text}"
  499. if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
  500. tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
  501. if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
  502. last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
  503. info = PngImagePlugin.PngInfo()
  504. data = torch.load(last_saved_file)
  505. info.add_text("sd-ti-embedding", embedding_to_b64(data))
  506. title = f"<{data.get('name', '???')}>"
  507. try:
  508. vectorSize = list(data['string_to_param'].values())[0].shape[0]
  509. except Exception:
  510. vectorSize = '?'
  511. checkpoint = sd_models.select_checkpoint()
  512. footer_left = checkpoint.model_name
  513. footer_mid = f'[{checkpoint.shorthash}]'
  514. footer_right = f'{vectorSize}v {steps_done}s'
  515. captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
  516. captioned_image = insert_image_data_embed(captioned_image, data)
  517. captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
  518. embedding_yet_to_be_embedded = False
  519. last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
  520. last_saved_image += f", prompt: {preview_text}"
  521. shared.state.job_no = embedding.step
  522. shared.state.textinfo = f"""
  523. <p>
  524. Loss: {loss_step:.7f}<br/>
  525. Step: {steps_done}<br/>
  526. Last prompt: {html.escape(batch.cond_text[0])}<br/>
  527. Last saved embedding: {html.escape(last_saved_file)}<br/>
  528. Last saved image: {html.escape(last_saved_image)}<br/>
  529. </p>
  530. """
  531. filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
  532. save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
  533. except Exception:
  534. errors.report("Error training embedding", exc_info=True)
  535. finally:
  536. pbar.leave = False
  537. pbar.close()
  538. shared.sd_model.first_stage_model.to(devices.device)
  539. shared.parallel_processing_allowed = old_parallel_processing_allowed
  540. sd_hijack_checkpoint.remove()
  541. return embedding, filename
  542. def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
  543. old_embedding_name = embedding.name
  544. old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
  545. old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
  546. old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
  547. try:
  548. embedding.sd_checkpoint = checkpoint.shorthash
  549. embedding.sd_checkpoint_name = checkpoint.model_name
  550. if remove_cached_checksum:
  551. embedding.cached_checksum = None
  552. embedding.name = embedding_name
  553. embedding.optimizer_state_dict = optimizer.state_dict()
  554. embedding.save(filename)
  555. except:
  556. embedding.sd_checkpoint = old_sd_checkpoint
  557. embedding.sd_checkpoint_name = old_sd_checkpoint_name
  558. embedding.name = old_embedding_name
  559. embedding.cached_checksum = old_cached_checksum
  560. raise