sd_models.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. import collections
  2. import os.path
  3. import sys
  4. import threading
  5. import torch
  6. import re
  7. import safetensors.torch
  8. from omegaconf import OmegaConf, ListConfig
  9. from os import mkdir
  10. from urllib import request
  11. import ldm.modules.midas as midas
  12. from ldm.util import instantiate_from_config
  13. from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
  14. from modules.timer import Timer
  15. from modules.shared import opts
  16. import tomesd
  17. import numpy as np
  18. model_dir = "Stable-diffusion"
  19. model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
  20. checkpoints_list = {}
  21. checkpoint_aliases = {}
  22. checkpoint_alisases = checkpoint_aliases # for compatibility with old name
  23. checkpoints_loaded = collections.OrderedDict()
  24. def replace_key(d, key, new_key, value):
  25. keys = list(d.keys())
  26. d[new_key] = value
  27. if key not in keys:
  28. return d
  29. index = keys.index(key)
  30. keys[index] = new_key
  31. new_d = {k: d[k] for k in keys}
  32. d.clear()
  33. d.update(new_d)
  34. return d
  35. class CheckpointInfo:
  36. def __init__(self, filename):
  37. self.filename = filename
  38. abspath = os.path.abspath(filename)
  39. abs_ckpt_dir = os.path.abspath(shared.cmd_opts.ckpt_dir) if shared.cmd_opts.ckpt_dir is not None else None
  40. self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
  41. if abs_ckpt_dir and abspath.startswith(abs_ckpt_dir):
  42. name = abspath.replace(abs_ckpt_dir, '')
  43. elif abspath.startswith(model_path):
  44. name = abspath.replace(model_path, '')
  45. else:
  46. name = os.path.basename(filename)
  47. if name.startswith("\\") or name.startswith("/"):
  48. name = name[1:]
  49. def read_metadata():
  50. metadata = read_metadata_from_safetensors(filename)
  51. self.modelspec_thumbnail = metadata.pop('modelspec.thumbnail', None)
  52. return metadata
  53. self.metadata = {}
  54. if self.is_safetensors:
  55. try:
  56. self.metadata = cache.cached_data_for_file('safetensors-metadata', "checkpoint/" + name, filename, read_metadata)
  57. except Exception as e:
  58. errors.display(e, f"reading metadata for {filename}")
  59. self.name = name
  60. self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
  61. self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
  62. self.hash = model_hash(filename)
  63. self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
  64. self.shorthash = self.sha256[0:10] if self.sha256 else None
  65. self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
  66. self.short_title = self.name_for_extra if self.shorthash is None else f'{self.name_for_extra} [{self.shorthash}]'
  67. self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]']
  68. if self.shorthash:
  69. self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
  70. def register(self):
  71. checkpoints_list[self.title] = self
  72. for id in self.ids:
  73. checkpoint_aliases[id] = self
  74. def calculate_shorthash(self):
  75. self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
  76. if self.sha256 is None:
  77. return
  78. shorthash = self.sha256[0:10]
  79. if self.shorthash == self.sha256[0:10]:
  80. return self.shorthash
  81. self.shorthash = shorthash
  82. if self.shorthash not in self.ids:
  83. self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
  84. old_title = self.title
  85. self.title = f'{self.name} [{self.shorthash}]'
  86. self.short_title = f'{self.name_for_extra} [{self.shorthash}]'
  87. replace_key(checkpoints_list, old_title, self.title, self)
  88. self.register()
  89. return self.shorthash
  90. try:
  91. # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
  92. from transformers import logging, CLIPModel # noqa: F401
  93. logging.set_verbosity_error()
  94. except Exception:
  95. pass
  96. def setup_model():
  97. """called once at startup to do various one-time tasks related to SD models"""
  98. os.makedirs(model_path, exist_ok=True)
  99. enable_midas_autodownload()
  100. patch_given_betas()
  101. def checkpoint_tiles(use_short=False):
  102. return [x.short_title if use_short else x.title for x in checkpoints_list.values()]
  103. def list_models():
  104. checkpoints_list.clear()
  105. checkpoint_aliases.clear()
  106. cmd_ckpt = shared.cmd_opts.ckpt
  107. if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
  108. model_url = None
  109. else:
  110. model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
  111. model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
  112. if os.path.exists(cmd_ckpt):
  113. checkpoint_info = CheckpointInfo(cmd_ckpt)
  114. checkpoint_info.register()
  115. shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
  116. elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
  117. print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
  118. for filename in model_list:
  119. checkpoint_info = CheckpointInfo(filename)
  120. checkpoint_info.register()
  121. re_strip_checksum = re.compile(r"\s*\[[^]]+]\s*$")
  122. def get_closet_checkpoint_match(search_string):
  123. if not search_string:
  124. return None
  125. checkpoint_info = checkpoint_aliases.get(search_string, None)
  126. if checkpoint_info is not None:
  127. return checkpoint_info
  128. found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
  129. if found:
  130. return found[0]
  131. search_string_without_checksum = re.sub(re_strip_checksum, '', search_string)
  132. found = sorted([info for info in checkpoints_list.values() if search_string_without_checksum in info.title], key=lambda x: len(x.title))
  133. if found:
  134. return found[0]
  135. return None
  136. def model_hash(filename):
  137. """old hash that only looks at a small part of the file and is prone to collisions"""
  138. try:
  139. with open(filename, "rb") as file:
  140. import hashlib
  141. m = hashlib.sha256()
  142. file.seek(0x100000)
  143. m.update(file.read(0x10000))
  144. return m.hexdigest()[0:8]
  145. except FileNotFoundError:
  146. return 'NOFILE'
  147. def select_checkpoint():
  148. """Raises `FileNotFoundError` if no checkpoints are found."""
  149. model_checkpoint = shared.opts.sd_model_checkpoint
  150. checkpoint_info = checkpoint_aliases.get(model_checkpoint, None)
  151. if checkpoint_info is not None:
  152. return checkpoint_info
  153. if len(checkpoints_list) == 0:
  154. error_message = "No checkpoints found. When searching for checkpoints, looked at:"
  155. if shared.cmd_opts.ckpt is not None:
  156. error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
  157. error_message += f"\n - directory {model_path}"
  158. if shared.cmd_opts.ckpt_dir is not None:
  159. error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
  160. error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
  161. raise FileNotFoundError(error_message)
  162. checkpoint_info = next(iter(checkpoints_list.values()))
  163. if model_checkpoint is not None:
  164. print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
  165. return checkpoint_info
  166. checkpoint_dict_replacements_sd1 = {
  167. 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
  168. 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
  169. 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
  170. }
  171. checkpoint_dict_replacements_sd2_turbo = { # Converts SD 2.1 Turbo from SGM to LDM format.
  172. 'conditioner.embedders.0.': 'cond_stage_model.',
  173. }
  174. def transform_checkpoint_dict_key(k, replacements):
  175. for text, replacement in replacements.items():
  176. if k.startswith(text):
  177. k = replacement + k[len(text):]
  178. return k
  179. def get_state_dict_from_checkpoint(pl_sd):
  180. pl_sd = pl_sd.pop("state_dict", pl_sd)
  181. pl_sd.pop("state_dict", None)
  182. is_sd2_turbo = 'conditioner.embedders.0.model.ln_final.weight' in pl_sd and pl_sd['conditioner.embedders.0.model.ln_final.weight'].size()[0] == 1024
  183. sd = {}
  184. for k, v in pl_sd.items():
  185. if is_sd2_turbo:
  186. new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd2_turbo)
  187. else:
  188. new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd1)
  189. if new_key is not None:
  190. sd[new_key] = v
  191. pl_sd.clear()
  192. pl_sd.update(sd)
  193. return pl_sd
  194. def read_metadata_from_safetensors(filename):
  195. import json
  196. with open(filename, mode="rb") as file:
  197. metadata_len = file.read(8)
  198. metadata_len = int.from_bytes(metadata_len, "little")
  199. json_start = file.read(2)
  200. assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
  201. json_data = json_start + file.read(metadata_len-2)
  202. json_obj = json.loads(json_data)
  203. res = {}
  204. for k, v in json_obj.get("__metadata__", {}).items():
  205. res[k] = v
  206. if isinstance(v, str) and v[0:1] == '{':
  207. try:
  208. res[k] = json.loads(v)
  209. except Exception:
  210. pass
  211. return res
  212. def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
  213. _, extension = os.path.splitext(checkpoint_file)
  214. if extension.lower() == ".safetensors":
  215. device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
  216. if not shared.opts.disable_mmap_load_safetensors:
  217. pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
  218. else:
  219. pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read())
  220. pl_sd = {k: v.to(device) for k, v in pl_sd.items()}
  221. else:
  222. pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
  223. if print_global_state and "global_step" in pl_sd:
  224. print(f"Global Step: {pl_sd['global_step']}")
  225. sd = get_state_dict_from_checkpoint(pl_sd)
  226. return sd
  227. def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
  228. sd_model_hash = checkpoint_info.calculate_shorthash()
  229. timer.record("calculate hash")
  230. if checkpoint_info in checkpoints_loaded:
  231. # use checkpoint cache
  232. print(f"Loading weights [{sd_model_hash}] from cache")
  233. # move to end as latest
  234. checkpoints_loaded.move_to_end(checkpoint_info)
  235. return checkpoints_loaded[checkpoint_info]
  236. print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
  237. res = read_state_dict(checkpoint_info.filename)
  238. timer.record("load weights from disk")
  239. return res
  240. class SkipWritingToConfig:
  241. """This context manager prevents load_model_weights from writing checkpoint name to the config when it loads weight."""
  242. skip = False
  243. previous = None
  244. def __enter__(self):
  245. self.previous = SkipWritingToConfig.skip
  246. SkipWritingToConfig.skip = True
  247. return self
  248. def __exit__(self, exc_type, exc_value, exc_traceback):
  249. SkipWritingToConfig.skip = self.previous
  250. def check_fp8(model):
  251. if model is None:
  252. return None
  253. if devices.get_optimal_device_name() == "mps":
  254. enable_fp8 = False
  255. elif shared.opts.fp8_storage == "Enable":
  256. enable_fp8 = True
  257. elif getattr(model, "is_sdxl", False) and shared.opts.fp8_storage == "Enable for SDXL":
  258. enable_fp8 = True
  259. else:
  260. enable_fp8 = False
  261. return enable_fp8
  262. def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
  263. sd_model_hash = checkpoint_info.calculate_shorthash()
  264. timer.record("calculate hash")
  265. if devices.fp8:
  266. # prevent model to load state dict in fp8
  267. model.half()
  268. if not SkipWritingToConfig.skip:
  269. shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
  270. if state_dict is None:
  271. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  272. model.is_sdxl = hasattr(model, 'conditioner')
  273. model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
  274. model.is_sd1 = not model.is_sdxl and not model.is_sd2
  275. model.is_ssd = model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in state_dict.keys()
  276. if model.is_sdxl:
  277. sd_models_xl.extend_sdxl(model)
  278. if model.is_ssd:
  279. sd_hijack.model_hijack.convert_sdxl_to_ssd(model)
  280. if shared.opts.sd_checkpoint_cache > 0:
  281. # cache newly loaded model
  282. checkpoints_loaded[checkpoint_info] = state_dict.copy()
  283. model.load_state_dict(state_dict, strict=False)
  284. timer.record("apply weights to model")
  285. del state_dict
  286. if shared.cmd_opts.opt_channelslast:
  287. model.to(memory_format=torch.channels_last)
  288. timer.record("apply channels_last")
  289. if shared.cmd_opts.no_half:
  290. model.float()
  291. model.alphas_cumprod_original = model.alphas_cumprod
  292. devices.dtype_unet = torch.float32
  293. timer.record("apply float()")
  294. else:
  295. vae = model.first_stage_model
  296. depth_model = getattr(model, 'depth_model', None)
  297. # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
  298. if shared.cmd_opts.no_half_vae:
  299. model.first_stage_model = None
  300. # with --upcast-sampling, don't convert the depth model weights to float16
  301. if shared.cmd_opts.upcast_sampling and depth_model:
  302. model.depth_model = None
  303. alphas_cumprod = model.alphas_cumprod
  304. model.alphas_cumprod = None
  305. model.half()
  306. model.alphas_cumprod = alphas_cumprod
  307. model.alphas_cumprod_original = alphas_cumprod
  308. model.first_stage_model = vae
  309. if depth_model:
  310. model.depth_model = depth_model
  311. devices.dtype_unet = torch.float16
  312. timer.record("apply half()")
  313. apply_alpha_schedule_override(model)
  314. for module in model.modules():
  315. if hasattr(module, 'fp16_weight'):
  316. del module.fp16_weight
  317. if hasattr(module, 'fp16_bias'):
  318. del module.fp16_bias
  319. if check_fp8(model):
  320. devices.fp8 = True
  321. first_stage = model.first_stage_model
  322. model.first_stage_model = None
  323. for module in model.modules():
  324. if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
  325. if shared.opts.cache_fp16_weight:
  326. module.fp16_weight = module.weight.data.clone().cpu().half()
  327. if module.bias is not None:
  328. module.fp16_bias = module.bias.data.clone().cpu().half()
  329. module.to(torch.float8_e4m3fn)
  330. model.first_stage_model = first_stage
  331. timer.record("apply fp8")
  332. else:
  333. devices.fp8 = False
  334. devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
  335. model.first_stage_model.to(devices.dtype_vae)
  336. timer.record("apply dtype to VAE")
  337. # clean up cache if limit is reached
  338. while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
  339. checkpoints_loaded.popitem(last=False)
  340. model.sd_model_hash = sd_model_hash
  341. model.sd_model_checkpoint = checkpoint_info.filename
  342. model.sd_checkpoint_info = checkpoint_info
  343. shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
  344. if hasattr(model, 'logvar'):
  345. model.logvar = model.logvar.to(devices.device) # fix for training
  346. sd_vae.delete_base_vae()
  347. sd_vae.clear_loaded_vae()
  348. vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple()
  349. sd_vae.load_vae(model, vae_file, vae_source)
  350. timer.record("load VAE")
  351. def enable_midas_autodownload():
  352. """
  353. Gives the ldm.modules.midas.api.load_model function automatic downloading.
  354. When the 512-depth-ema model, and other future models like it, is loaded,
  355. it calls midas.api.load_model to load the associated midas depth model.
  356. This function applies a wrapper to download the model to the correct
  357. location automatically.
  358. """
  359. midas_path = os.path.join(paths.models_path, 'midas')
  360. # stable-diffusion-stability-ai hard-codes the midas model path to
  361. # a location that differs from where other scripts using this model look.
  362. # HACK: Overriding the path here.
  363. for k, v in midas.api.ISL_PATHS.items():
  364. file_name = os.path.basename(v)
  365. midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
  366. midas_urls = {
  367. "dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
  368. "dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
  369. "midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
  370. "midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
  371. }
  372. midas.api.load_model_inner = midas.api.load_model
  373. def load_model_wrapper(model_type):
  374. path = midas.api.ISL_PATHS[model_type]
  375. if not os.path.exists(path):
  376. if not os.path.exists(midas_path):
  377. mkdir(midas_path)
  378. print(f"Downloading midas model weights for {model_type} to {path}")
  379. request.urlretrieve(midas_urls[model_type], path)
  380. print(f"{model_type} downloaded")
  381. return midas.api.load_model_inner(model_type)
  382. midas.api.load_model = load_model_wrapper
  383. def patch_given_betas():
  384. import ldm.models.diffusion.ddpm
  385. def patched_register_schedule(*args, **kwargs):
  386. """a modified version of register_schedule function that converts plain list from Omegaconf into numpy"""
  387. if isinstance(args[1], ListConfig):
  388. args = (args[0], np.array(args[1]), *args[2:])
  389. original_register_schedule(*args, **kwargs)
  390. original_register_schedule = patches.patch(__name__, ldm.models.diffusion.ddpm.DDPM, 'register_schedule', patched_register_schedule)
  391. def repair_config(sd_config):
  392. if not hasattr(sd_config.model.params, "use_ema"):
  393. sd_config.model.params.use_ema = False
  394. if hasattr(sd_config.model.params, 'unet_config'):
  395. if shared.cmd_opts.no_half:
  396. sd_config.model.params.unet_config.params.use_fp16 = False
  397. elif shared.cmd_opts.upcast_sampling:
  398. sd_config.model.params.unet_config.params.use_fp16 = True
  399. if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
  400. sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
  401. # For UnCLIP-L, override the hardcoded karlo directory
  402. if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
  403. karlo_path = os.path.join(paths.models_path, 'karlo')
  404. sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
  405. def rescale_zero_terminal_snr_abar(alphas_cumprod):
  406. alphas_bar_sqrt = alphas_cumprod.sqrt()
  407. # Store old values.
  408. alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
  409. alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
  410. # Shift so the last timestep is zero.
  411. alphas_bar_sqrt -= (alphas_bar_sqrt_T)
  412. # Scale so the first timestep is back to the old value.
  413. alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
  414. # Convert alphas_bar_sqrt to betas
  415. alphas_bar = alphas_bar_sqrt ** 2 # Revert sqrt
  416. alphas_bar[-1] = 4.8973451890853435e-08
  417. return alphas_bar
  418. def apply_alpha_schedule_override(sd_model, p=None):
  419. """
  420. Applies an override to the alpha schedule of the model according to settings.
  421. - downcasts the alpha schedule to half precision
  422. - rescales the alpha schedule to have zero terminal SNR
  423. """
  424. if not hasattr(sd_model, 'alphas_cumprod') or not hasattr(sd_model, 'alphas_cumprod_original'):
  425. return
  426. sd_model.alphas_cumprod = sd_model.alphas_cumprod_original.to(shared.device)
  427. if opts.use_downcasted_alpha_bar:
  428. if p is not None:
  429. p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
  430. sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)
  431. if opts.sd_noise_schedule == "Zero Terminal SNR":
  432. if p is not None:
  433. p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
  434. sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)
  435. sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
  436. sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
  437. sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight'
  438. sdxl_refiner_clip_weight = 'conditioner.embedders.0.model.ln_final.weight'
  439. class SdModelData:
  440. def __init__(self):
  441. self.sd_model = None
  442. self.loaded_sd_models = []
  443. self.was_loaded_at_least_once = False
  444. self.lock = threading.Lock()
  445. def get_sd_model(self):
  446. if self.was_loaded_at_least_once:
  447. return self.sd_model
  448. if self.sd_model is None:
  449. with self.lock:
  450. if self.sd_model is not None or self.was_loaded_at_least_once:
  451. return self.sd_model
  452. try:
  453. load_model()
  454. except Exception as e:
  455. errors.display(e, "loading stable diffusion model", full_traceback=True)
  456. print("", file=sys.stderr)
  457. print("Stable diffusion model failed to load", file=sys.stderr)
  458. self.sd_model = None
  459. return self.sd_model
  460. def set_sd_model(self, v, already_loaded=False):
  461. self.sd_model = v
  462. if already_loaded:
  463. sd_vae.base_vae = getattr(v, "base_vae", None)
  464. sd_vae.loaded_vae_file = getattr(v, "loaded_vae_file", None)
  465. sd_vae.checkpoint_info = v.sd_checkpoint_info
  466. try:
  467. self.loaded_sd_models.remove(v)
  468. except ValueError:
  469. pass
  470. if v is not None:
  471. self.loaded_sd_models.insert(0, v)
  472. model_data = SdModelData()
  473. def get_empty_cond(sd_model):
  474. p = processing.StableDiffusionProcessingTxt2Img()
  475. extra_networks.activate(p, {})
  476. if hasattr(sd_model, 'conditioner'):
  477. d = sd_model.get_learned_conditioning([""])
  478. return d['crossattn']
  479. else:
  480. return sd_model.cond_stage_model([""])
  481. def send_model_to_cpu(m):
  482. if m.lowvram:
  483. lowvram.send_everything_to_cpu()
  484. else:
  485. m.to(devices.cpu)
  486. devices.torch_gc()
  487. def model_target_device(m):
  488. if lowvram.is_needed(m):
  489. return devices.cpu
  490. else:
  491. return devices.device
  492. def send_model_to_device(m):
  493. lowvram.apply(m)
  494. if not m.lowvram:
  495. m.to(shared.device)
  496. def send_model_to_trash(m):
  497. m.to(device="meta")
  498. devices.torch_gc()
  499. def load_model(checkpoint_info=None, already_loaded_state_dict=None):
  500. from modules import sd_hijack
  501. checkpoint_info = checkpoint_info or select_checkpoint()
  502. timer = Timer()
  503. if model_data.sd_model:
  504. send_model_to_trash(model_data.sd_model)
  505. model_data.sd_model = None
  506. devices.torch_gc()
  507. timer.record("unload existing model")
  508. if already_loaded_state_dict is not None:
  509. state_dict = already_loaded_state_dict
  510. else:
  511. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  512. checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
  513. clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
  514. timer.record("find config")
  515. sd_config = OmegaConf.load(checkpoint_config)
  516. repair_config(sd_config)
  517. timer.record("load config")
  518. print(f"Creating model from config: {checkpoint_config}")
  519. sd_model = None
  520. try:
  521. with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
  522. with sd_disable_initialization.InitializeOnMeta():
  523. sd_model = instantiate_from_config(sd_config.model)
  524. except Exception as e:
  525. errors.display(e, "creating model quickly", full_traceback=True)
  526. if sd_model is None:
  527. print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
  528. with sd_disable_initialization.InitializeOnMeta():
  529. sd_model = instantiate_from_config(sd_config.model)
  530. sd_model.used_config = checkpoint_config
  531. timer.record("create model")
  532. if shared.cmd_opts.no_half:
  533. weight_dtype_conversion = None
  534. else:
  535. weight_dtype_conversion = {
  536. 'first_stage_model': None,
  537. 'alphas_cumprod': None,
  538. '': torch.float16,
  539. }
  540. with sd_disable_initialization.LoadStateDictOnMeta(state_dict, device=model_target_device(sd_model), weight_dtype_conversion=weight_dtype_conversion):
  541. load_model_weights(sd_model, checkpoint_info, state_dict, timer)
  542. timer.record("load weights from state dict")
  543. send_model_to_device(sd_model)
  544. timer.record("move model to device")
  545. sd_hijack.model_hijack.hijack(sd_model)
  546. timer.record("hijack")
  547. sd_model.eval()
  548. model_data.set_sd_model(sd_model)
  549. model_data.was_loaded_at_least_once = True
  550. sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
  551. timer.record("load textual inversion embeddings")
  552. script_callbacks.model_loaded_callback(sd_model)
  553. timer.record("scripts callbacks")
  554. with devices.autocast(), torch.no_grad():
  555. sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model)
  556. timer.record("calculate empty prompt")
  557. print(f"Model loaded in {timer.summary()}.")
  558. return sd_model
  559. def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
  560. """
  561. Checks if the desired checkpoint from checkpoint_info is not already loaded in model_data.loaded_sd_models.
  562. If it is loaded, returns that (moving it to GPU if necessary, and moving the currently loadded model to CPU if necessary).
  563. If not, returns the model that can be used to load weights from checkpoint_info's file.
  564. If no such model exists, returns None.
  565. Additionally deletes loaded models that are over the limit set in settings (sd_checkpoints_limit).
  566. """
  567. already_loaded = None
  568. for i in reversed(range(len(model_data.loaded_sd_models))):
  569. loaded_model = model_data.loaded_sd_models[i]
  570. if loaded_model.sd_checkpoint_info.filename == checkpoint_info.filename:
  571. already_loaded = loaded_model
  572. continue
  573. if len(model_data.loaded_sd_models) > shared.opts.sd_checkpoints_limit > 0:
  574. print(f"Unloading model {len(model_data.loaded_sd_models)} over the limit of {shared.opts.sd_checkpoints_limit}: {loaded_model.sd_checkpoint_info.title}")
  575. model_data.loaded_sd_models.pop()
  576. send_model_to_trash(loaded_model)
  577. timer.record("send model to trash")
  578. if shared.opts.sd_checkpoints_keep_in_cpu:
  579. send_model_to_cpu(sd_model)
  580. timer.record("send model to cpu")
  581. if already_loaded is not None:
  582. send_model_to_device(already_loaded)
  583. timer.record("send model to device")
  584. model_data.set_sd_model(already_loaded, already_loaded=True)
  585. if not SkipWritingToConfig.skip:
  586. shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title
  587. shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256
  588. print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}")
  589. sd_vae.reload_vae_weights(already_loaded)
  590. return model_data.sd_model
  591. elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit:
  592. print(f"Loading model {checkpoint_info.title} ({len(model_data.loaded_sd_models) + 1} out of {shared.opts.sd_checkpoints_limit})")
  593. model_data.sd_model = None
  594. load_model(checkpoint_info)
  595. return model_data.sd_model
  596. elif len(model_data.loaded_sd_models) > 0:
  597. sd_model = model_data.loaded_sd_models.pop()
  598. model_data.sd_model = sd_model
  599. sd_vae.base_vae = getattr(sd_model, "base_vae", None)
  600. sd_vae.loaded_vae_file = getattr(sd_model, "loaded_vae_file", None)
  601. sd_vae.checkpoint_info = sd_model.sd_checkpoint_info
  602. print(f"Reusing loaded model {sd_model.sd_checkpoint_info.title} to load {checkpoint_info.title}")
  603. return sd_model
  604. else:
  605. return None
  606. def reload_model_weights(sd_model=None, info=None, forced_reload=False):
  607. checkpoint_info = info or select_checkpoint()
  608. timer = Timer()
  609. if not sd_model:
  610. sd_model = model_data.sd_model
  611. if sd_model is None: # previous model load failed
  612. current_checkpoint_info = None
  613. else:
  614. current_checkpoint_info = sd_model.sd_checkpoint_info
  615. if check_fp8(sd_model) != devices.fp8:
  616. # load from state dict again to prevent extra numerical errors
  617. forced_reload = True
  618. elif sd_model.sd_model_checkpoint == checkpoint_info.filename and not forced_reload:
  619. return sd_model
  620. sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer)
  621. if not forced_reload and sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
  622. return sd_model
  623. if sd_model is not None:
  624. sd_unet.apply_unet("None")
  625. send_model_to_cpu(sd_model)
  626. sd_hijack.model_hijack.undo_hijack(sd_model)
  627. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  628. checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
  629. timer.record("find config")
  630. if sd_model is None or checkpoint_config != sd_model.used_config:
  631. if sd_model is not None:
  632. send_model_to_trash(sd_model)
  633. load_model(checkpoint_info, already_loaded_state_dict=state_dict)
  634. return model_data.sd_model
  635. try:
  636. load_model_weights(sd_model, checkpoint_info, state_dict, timer)
  637. except Exception:
  638. print("Failed to load checkpoint, restoring previous")
  639. load_model_weights(sd_model, current_checkpoint_info, None, timer)
  640. raise
  641. finally:
  642. sd_hijack.model_hijack.hijack(sd_model)
  643. timer.record("hijack")
  644. if not sd_model.lowvram:
  645. sd_model.to(devices.device)
  646. timer.record("move model to device")
  647. script_callbacks.model_loaded_callback(sd_model)
  648. timer.record("script callbacks")
  649. print(f"Weights loaded in {timer.summary()}.")
  650. model_data.set_sd_model(sd_model)
  651. sd_unet.apply_unet()
  652. return sd_model
  653. def unload_model_weights(sd_model=None, info=None):
  654. send_model_to_cpu(sd_model or shared.sd_model)
  655. return sd_model
  656. def apply_token_merging(sd_model, token_merging_ratio):
  657. """
  658. Applies speed and memory optimizations from tomesd.
  659. """
  660. current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
  661. if current_token_merging_ratio == token_merging_ratio:
  662. return
  663. if current_token_merging_ratio > 0:
  664. tomesd.remove_patch(sd_model)
  665. if token_merging_ratio > 0:
  666. tomesd.apply_patch(
  667. sd_model,
  668. ratio=token_merging_ratio,
  669. use_rand=False, # can cause issues with some samplers
  670. merge_attn=True,
  671. merge_crossattn=False,
  672. merge_mlp=False
  673. )
  674. sd_model.applied_token_merged_ratio = token_merging_ratio