123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- from __future__ import annotations
- import importlib
- import logging
- import os
- from typing import TYPE_CHECKING
- from urllib.parse import urlparse
- import torch
- from modules import shared
- from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
- if TYPE_CHECKING:
- import spandrel
- logger = logging.getLogger(__name__)
- def load_file_from_url(
- url: str,
- *,
- model_dir: str,
- progress: bool = True,
- file_name: str | None = None,
- ) -> str:
- """Download a file from `url` into `model_dir`, using the file present if possible.
- Returns the path to the downloaded file.
- """
- os.makedirs(model_dir, exist_ok=True)
- if not file_name:
- parts = urlparse(url)
- file_name = os.path.basename(parts.path)
- cached_file = os.path.abspath(os.path.join(model_dir, file_name))
- if not os.path.exists(cached_file):
- print(f'Downloading: "{url}" to {cached_file}\n')
- from torch.hub import download_url_to_file
- download_url_to_file(url, cached_file, progress=progress)
- return cached_file
- def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
- """
- A one-and done loader to try finding the desired models in specified directories.
- @param download_name: Specify to download from model_url immediately.
- @param model_url: If no other models are found, this will be downloaded on upscale.
- @param model_path: The location to store/find models in.
- @param command_path: A command-line argument to search for models in first.
- @param ext_filter: An optional list of filename extensions to filter by
- @return: A list of paths containing the desired model(s)
- """
- output = []
- try:
- places = []
- if command_path is not None and command_path != model_path:
- pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
- if os.path.exists(pretrained_path):
- print(f"Appending path: {pretrained_path}")
- places.append(pretrained_path)
- elif os.path.exists(command_path):
- places.append(command_path)
- places.append(model_path)
- for place in places:
- for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
- if os.path.islink(full_path) and not os.path.exists(full_path):
- print(f"Skipping broken symlink: {full_path}")
- continue
- if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
- continue
- if full_path not in output:
- output.append(full_path)
- if model_url is not None and len(output) == 0:
- if download_name is not None:
- output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
- else:
- output.append(model_url)
- except Exception:
- pass
- return output
- def friendly_name(file: str):
- if file.startswith("http"):
- file = urlparse(file).path
- file = os.path.basename(file)
- model_name, extension = os.path.splitext(file)
- return model_name
- def load_upscalers():
- # We can only do this 'magic' method to dynamically load upscalers if they are referenced,
- # so we'll try to import any _model.py files before looking in __subclasses__
- modules_dir = os.path.join(shared.script_path, "modules")
- for file in os.listdir(modules_dir):
- if "_model.py" in file:
- model_name = file.replace("_model.py", "")
- full_model = f"modules.{model_name}_model"
- try:
- importlib.import_module(full_model)
- except Exception:
- pass
- data = []
- commandline_options = vars(shared.cmd_opts)
- # some of upscaler classes will not go away after reloading their modules, and we'll end
- # up with two copies of those classes. The newest copy will always be the last in the list,
- # so we go from end to beginning and ignore duplicates
- used_classes = {}
- for cls in reversed(Upscaler.__subclasses__()):
- classname = str(cls)
- if classname not in used_classes:
- used_classes[classname] = cls
- for cls in reversed(used_classes.values()):
- name = cls.__name__
- cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
- commandline_model_path = commandline_options.get(cmd_name, None)
- scaler = cls(commandline_model_path)
- scaler.user_path = commandline_model_path
- scaler.model_download_path = commandline_model_path or scaler.model_path
- data += scaler.scalers
- shared.sd_upscalers = sorted(
- data,
- # Special case for UpscalerNone keeps it at the beginning of the list.
- key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
- )
- def load_spandrel_model(
- path: str | os.PathLike,
- *,
- device: str | torch.device | None,
- prefer_half: bool = False,
- dtype: str | torch.dtype | None = None,
- expected_architecture: str | None = None,
- ) -> spandrel.ModelDescriptor:
- import spandrel
- model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path))
- if expected_architecture and model_descriptor.architecture != expected_architecture:
- logger.warning(
- f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})",
- )
- half = False
- if prefer_half:
- if model_descriptor.supports_half:
- model_descriptor.model.half()
- half = True
- else:
- logger.info("Model %s does not support half precision, ignoring --half", path)
- if dtype:
- model_descriptor.model.to(dtype=dtype)
- model_descriptor.model.eval()
- logger.debug(
- "Loaded %s from %s (device=%s, half=%s, dtype=%s)",
- model_descriptor, path, device, half, dtype,
- )
- return model_descriptor
|