networks.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. import gradio as gr
  2. import logging
  3. import os
  4. import re
  5. import lora_patches
  6. import network
  7. import network_lora
  8. import network_glora
  9. import network_hada
  10. import network_ia3
  11. import network_lokr
  12. import network_full
  13. import network_norm
  14. import network_oft
  15. import torch
  16. from typing import Union
  17. from modules import shared, devices, sd_models, errors, scripts, sd_hijack
  18. import modules.textual_inversion.textual_inversion as textual_inversion
  19. from lora_logger import logger
  20. module_types = [
  21. network_lora.ModuleTypeLora(),
  22. network_hada.ModuleTypeHada(),
  23. network_ia3.ModuleTypeIa3(),
  24. network_lokr.ModuleTypeLokr(),
  25. network_full.ModuleTypeFull(),
  26. network_norm.ModuleTypeNorm(),
  27. network_glora.ModuleTypeGLora(),
  28. network_oft.ModuleTypeOFT(),
  29. ]
  30. re_digits = re.compile(r"\d+")
  31. re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
  32. re_compiled = {}
  33. suffix_conversion = {
  34. "attentions": {},
  35. "resnets": {
  36. "conv1": "in_layers_2",
  37. "conv2": "out_layers_3",
  38. "norm1": "in_layers_0",
  39. "norm2": "out_layers_0",
  40. "time_emb_proj": "emb_layers_1",
  41. "conv_shortcut": "skip_connection",
  42. }
  43. }
  44. def convert_diffusers_name_to_compvis(key, is_sd2):
  45. def match(match_list, regex_text):
  46. regex = re_compiled.get(regex_text)
  47. if regex is None:
  48. regex = re.compile(regex_text)
  49. re_compiled[regex_text] = regex
  50. r = re.match(regex, key)
  51. if not r:
  52. return False
  53. match_list.clear()
  54. match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
  55. return True
  56. m = []
  57. if match(m, r"lora_unet_conv_in(.*)"):
  58. return f'diffusion_model_input_blocks_0_0{m[0]}'
  59. if match(m, r"lora_unet_conv_out(.*)"):
  60. return f'diffusion_model_out_2{m[0]}'
  61. if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
  62. return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
  63. if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
  64. suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
  65. return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
  66. if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
  67. suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
  68. return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
  69. if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
  70. suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
  71. return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
  72. if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
  73. return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
  74. if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
  75. return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
  76. if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
  77. if is_sd2:
  78. if 'mlp_fc1' in m[1]:
  79. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
  80. elif 'mlp_fc2' in m[1]:
  81. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
  82. else:
  83. return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
  84. return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
  85. if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
  86. if 'mlp_fc1' in m[1]:
  87. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
  88. elif 'mlp_fc2' in m[1]:
  89. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
  90. else:
  91. return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
  92. return key
  93. def assign_network_names_to_compvis_modules(sd_model):
  94. network_layer_mapping = {}
  95. if shared.sd_model.is_sdxl:
  96. for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
  97. if not hasattr(embedder, 'wrapped'):
  98. continue
  99. for name, module in embedder.wrapped.named_modules():
  100. network_name = f'{i}_{name.replace(".", "_")}'
  101. network_layer_mapping[network_name] = module
  102. module.network_layer_name = network_name
  103. else:
  104. for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
  105. network_name = name.replace(".", "_")
  106. network_layer_mapping[network_name] = module
  107. module.network_layer_name = network_name
  108. for name, module in shared.sd_model.model.named_modules():
  109. network_name = name.replace(".", "_")
  110. network_layer_mapping[network_name] = module
  111. module.network_layer_name = network_name
  112. sd_model.network_layer_mapping = network_layer_mapping
  113. def load_network(name, network_on_disk):
  114. net = network.Network(name, network_on_disk)
  115. net.mtime = os.path.getmtime(network_on_disk.filename)
  116. sd = sd_models.read_state_dict(network_on_disk.filename)
  117. # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
  118. if not hasattr(shared.sd_model, 'network_layer_mapping'):
  119. assign_network_names_to_compvis_modules(shared.sd_model)
  120. keys_failed_to_match = {}
  121. is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
  122. matched_networks = {}
  123. bundle_embeddings = {}
  124. for key_network, weight in sd.items():
  125. key_network_without_network_parts, _, network_part = key_network.partition(".")
  126. if key_network_without_network_parts == "bundle_emb":
  127. emb_name, vec_name = network_part.split(".", 1)
  128. emb_dict = bundle_embeddings.get(emb_name, {})
  129. if vec_name.split('.')[0] == 'string_to_param':
  130. _, k2 = vec_name.split('.', 1)
  131. emb_dict['string_to_param'] = {k2: weight}
  132. else:
  133. emb_dict[vec_name] = weight
  134. bundle_embeddings[emb_name] = emb_dict
  135. key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
  136. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  137. if sd_module is None:
  138. m = re_x_proj.match(key)
  139. if m:
  140. sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
  141. # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
  142. if sd_module is None and "lora_unet" in key_network_without_network_parts:
  143. key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
  144. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  145. elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
  146. key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
  147. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  148. # some SD1 Loras also have correct compvis keys
  149. if sd_module is None:
  150. key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
  151. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  152. # kohya_ss OFT module
  153. elif sd_module is None and "oft_unet" in key_network_without_network_parts:
  154. key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
  155. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  156. # KohakuBlueLeaf OFT module
  157. if sd_module is None and "oft_diag" in key:
  158. key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
  159. key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
  160. sd_module = shared.sd_model.network_layer_mapping.get(key, None)
  161. if sd_module is None:
  162. keys_failed_to_match[key_network] = key
  163. continue
  164. if key not in matched_networks:
  165. matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
  166. matched_networks[key].w[network_part] = weight
  167. for key, weights in matched_networks.items():
  168. net_module = None
  169. for nettype in module_types:
  170. net_module = nettype.create_module(net, weights)
  171. if net_module is not None:
  172. break
  173. if net_module is None:
  174. raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
  175. net.modules[key] = net_module
  176. embeddings = {}
  177. for emb_name, data in bundle_embeddings.items():
  178. embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
  179. embedding.loaded = None
  180. embeddings[emb_name] = embedding
  181. net.bundle_embeddings = embeddings
  182. if keys_failed_to_match:
  183. logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
  184. return net
  185. def purge_networks_from_memory():
  186. while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
  187. name = next(iter(networks_in_memory))
  188. networks_in_memory.pop(name, None)
  189. devices.torch_gc()
  190. def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
  191. emb_db = sd_hijack.model_hijack.embedding_db
  192. already_loaded = {}
  193. for net in loaded_networks:
  194. if net.name in names:
  195. already_loaded[net.name] = net
  196. for emb_name, embedding in net.bundle_embeddings.items():
  197. if embedding.loaded:
  198. emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
  199. loaded_networks.clear()
  200. networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
  201. if any(x is None for x in networks_on_disk):
  202. list_available_networks()
  203. networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
  204. failed_to_load_networks = []
  205. for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
  206. net = already_loaded.get(name, None)
  207. if network_on_disk is not None:
  208. if net is None:
  209. net = networks_in_memory.get(name)
  210. if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
  211. try:
  212. net = load_network(name, network_on_disk)
  213. networks_in_memory.pop(name, None)
  214. networks_in_memory[name] = net
  215. except Exception as e:
  216. errors.display(e, f"loading network {network_on_disk.filename}")
  217. continue
  218. net.mentioned_name = name
  219. network_on_disk.read_hash()
  220. if net is None:
  221. failed_to_load_networks.append(name)
  222. logging.info(f"Couldn't find network with name {name}")
  223. continue
  224. net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
  225. net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
  226. net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
  227. loaded_networks.append(net)
  228. for emb_name, embedding in net.bundle_embeddings.items():
  229. if embedding.loaded is None and emb_name in emb_db.word_embeddings:
  230. logger.warning(
  231. f'Skip bundle embedding: "{emb_name}"'
  232. ' as it was already loaded from embeddings folder'
  233. )
  234. continue
  235. embedding.loaded = False
  236. if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
  237. embedding.loaded = True
  238. emb_db.register_embedding(embedding, shared.sd_model)
  239. else:
  240. emb_db.skipped_embeddings[name] = embedding
  241. if failed_to_load_networks:
  242. lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
  243. sd_hijack.model_hijack.comments.append(lora_not_found_message)
  244. if shared.opts.lora_not_found_warning_console:
  245. print(f'\n{lora_not_found_message}\n')
  246. if shared.opts.lora_not_found_gradio_warning:
  247. gr.Warning(lora_not_found_message)
  248. purge_networks_from_memory()
  249. def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
  250. weights_backup = getattr(self, "network_weights_backup", None)
  251. bias_backup = getattr(self, "network_bias_backup", None)
  252. if weights_backup is None and bias_backup is None:
  253. return
  254. if weights_backup is not None:
  255. if isinstance(self, torch.nn.MultiheadAttention):
  256. self.in_proj_weight.copy_(weights_backup[0])
  257. self.out_proj.weight.copy_(weights_backup[1])
  258. else:
  259. self.weight.copy_(weights_backup)
  260. if bias_backup is not None:
  261. if isinstance(self, torch.nn.MultiheadAttention):
  262. self.out_proj.bias.copy_(bias_backup)
  263. else:
  264. self.bias.copy_(bias_backup)
  265. else:
  266. if isinstance(self, torch.nn.MultiheadAttention):
  267. self.out_proj.bias = None
  268. else:
  269. self.bias = None
  270. def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
  271. """
  272. Applies the currently selected set of networks to the weights of torch layer self.
  273. If weights already have this particular set of networks applied, does nothing.
  274. If not, restores original weights from backup and alters weights according to networks.
  275. """
  276. network_layer_name = getattr(self, 'network_layer_name', None)
  277. if network_layer_name is None:
  278. return
  279. current_names = getattr(self, "network_current_names", ())
  280. wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
  281. weights_backup = getattr(self, "network_weights_backup", None)
  282. if weights_backup is None and wanted_names != ():
  283. if current_names != ():
  284. raise RuntimeError("no backup weights found and current weights are not unchanged")
  285. if isinstance(self, torch.nn.MultiheadAttention):
  286. weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
  287. else:
  288. weights_backup = self.weight.to(devices.cpu, copy=True)
  289. self.network_weights_backup = weights_backup
  290. bias_backup = getattr(self, "network_bias_backup", None)
  291. if bias_backup is None:
  292. if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
  293. bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
  294. elif getattr(self, 'bias', None) is not None:
  295. bias_backup = self.bias.to(devices.cpu, copy=True)
  296. else:
  297. bias_backup = None
  298. self.network_bias_backup = bias_backup
  299. if current_names != wanted_names:
  300. network_restore_weights_from_backup(self)
  301. for net in loaded_networks:
  302. module = net.modules.get(network_layer_name, None)
  303. if module is not None and hasattr(self, 'weight'):
  304. try:
  305. with torch.no_grad():
  306. if getattr(self, 'fp16_weight', None) is None:
  307. weight = self.weight
  308. bias = self.bias
  309. else:
  310. weight = self.fp16_weight.clone().to(self.weight.device)
  311. bias = getattr(self, 'fp16_bias', None)
  312. if bias is not None:
  313. bias = bias.clone().to(self.bias.device)
  314. updown, ex_bias = module.calc_updown(weight)
  315. if len(weight.shape) == 4 and weight.shape[1] == 9:
  316. # inpainting model. zero pad updown to make channel[1] 4 to 9
  317. updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
  318. self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
  319. if ex_bias is not None and hasattr(self, 'bias'):
  320. if self.bias is None:
  321. self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
  322. else:
  323. self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
  324. except RuntimeError as e:
  325. logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
  326. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  327. continue
  328. module_q = net.modules.get(network_layer_name + "_q_proj", None)
  329. module_k = net.modules.get(network_layer_name + "_k_proj", None)
  330. module_v = net.modules.get(network_layer_name + "_v_proj", None)
  331. module_out = net.modules.get(network_layer_name + "_out_proj", None)
  332. if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
  333. try:
  334. with torch.no_grad():
  335. updown_q, _ = module_q.calc_updown(self.in_proj_weight)
  336. updown_k, _ = module_k.calc_updown(self.in_proj_weight)
  337. updown_v, _ = module_v.calc_updown(self.in_proj_weight)
  338. updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
  339. updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
  340. self.in_proj_weight += updown_qkv
  341. self.out_proj.weight += updown_out
  342. if ex_bias is not None:
  343. if self.out_proj.bias is None:
  344. self.out_proj.bias = torch.nn.Parameter(ex_bias)
  345. else:
  346. self.out_proj.bias += ex_bias
  347. except RuntimeError as e:
  348. logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
  349. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  350. continue
  351. if module is None:
  352. continue
  353. logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
  354. extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
  355. self.network_current_names = wanted_names
  356. def network_forward(org_module, input, original_forward):
  357. """
  358. Old way of applying Lora by executing operations during layer's forward.
  359. Stacking many loras this way results in big performance degradation.
  360. """
  361. if len(loaded_networks) == 0:
  362. return original_forward(org_module, input)
  363. input = devices.cond_cast_unet(input)
  364. network_restore_weights_from_backup(org_module)
  365. network_reset_cached_weight(org_module)
  366. y = original_forward(org_module, input)
  367. network_layer_name = getattr(org_module, 'network_layer_name', None)
  368. for lora in loaded_networks:
  369. module = lora.modules.get(network_layer_name, None)
  370. if module is None:
  371. continue
  372. y = module.forward(input, y)
  373. return y
  374. def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
  375. self.network_current_names = ()
  376. self.network_weights_backup = None
  377. self.network_bias_backup = None
  378. def network_Linear_forward(self, input):
  379. if shared.opts.lora_functional:
  380. return network_forward(self, input, originals.Linear_forward)
  381. network_apply_weights(self)
  382. return originals.Linear_forward(self, input)
  383. def network_Linear_load_state_dict(self, *args, **kwargs):
  384. network_reset_cached_weight(self)
  385. return originals.Linear_load_state_dict(self, *args, **kwargs)
  386. def network_Conv2d_forward(self, input):
  387. if shared.opts.lora_functional:
  388. return network_forward(self, input, originals.Conv2d_forward)
  389. network_apply_weights(self)
  390. return originals.Conv2d_forward(self, input)
  391. def network_Conv2d_load_state_dict(self, *args, **kwargs):
  392. network_reset_cached_weight(self)
  393. return originals.Conv2d_load_state_dict(self, *args, **kwargs)
  394. def network_GroupNorm_forward(self, input):
  395. if shared.opts.lora_functional:
  396. return network_forward(self, input, originals.GroupNorm_forward)
  397. network_apply_weights(self)
  398. return originals.GroupNorm_forward(self, input)
  399. def network_GroupNorm_load_state_dict(self, *args, **kwargs):
  400. network_reset_cached_weight(self)
  401. return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
  402. def network_LayerNorm_forward(self, input):
  403. if shared.opts.lora_functional:
  404. return network_forward(self, input, originals.LayerNorm_forward)
  405. network_apply_weights(self)
  406. return originals.LayerNorm_forward(self, input)
  407. def network_LayerNorm_load_state_dict(self, *args, **kwargs):
  408. network_reset_cached_weight(self)
  409. return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
  410. def network_MultiheadAttention_forward(self, *args, **kwargs):
  411. network_apply_weights(self)
  412. return originals.MultiheadAttention_forward(self, *args, **kwargs)
  413. def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
  414. network_reset_cached_weight(self)
  415. return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
  416. def list_available_networks():
  417. available_networks.clear()
  418. available_network_aliases.clear()
  419. forbidden_network_aliases.clear()
  420. available_network_hash_lookup.clear()
  421. forbidden_network_aliases.update({"none": 1, "Addams": 1})
  422. os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
  423. candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
  424. candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
  425. for filename in candidates:
  426. if os.path.isdir(filename):
  427. continue
  428. name = os.path.splitext(os.path.basename(filename))[0]
  429. try:
  430. entry = network.NetworkOnDisk(name, filename)
  431. except OSError: # should catch FileNotFoundError and PermissionError etc.
  432. errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
  433. continue
  434. available_networks[name] = entry
  435. if entry.alias in available_network_aliases:
  436. forbidden_network_aliases[entry.alias.lower()] = 1
  437. available_network_aliases[name] = entry
  438. available_network_aliases[entry.alias] = entry
  439. re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
  440. def infotext_pasted(infotext, params):
  441. if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
  442. return # if the other extension is active, it will handle those fields, no need to do anything
  443. added = []
  444. for k in params:
  445. if not k.startswith("AddNet Model "):
  446. continue
  447. num = k[13:]
  448. if params.get("AddNet Module " + num) != "LoRA":
  449. continue
  450. name = params.get("AddNet Model " + num)
  451. if name is None:
  452. continue
  453. m = re_network_name.match(name)
  454. if m:
  455. name = m.group(1)
  456. multiplier = params.get("AddNet Weight A " + num, "1.0")
  457. added.append(f"<lora:{name}:{multiplier}>")
  458. if added:
  459. params["Prompt"] += "\n" + "".join(added)
  460. originals: lora_patches.LoraPatches = None
  461. extra_network_lora = None
  462. available_networks = {}
  463. available_network_aliases = {}
  464. loaded_networks = []
  465. loaded_bundle_embeddings = {}
  466. networks_in_memory = {}
  467. available_network_hash_lookup = {}
  468. forbidden_network_aliases = {}
  469. list_available_networks()