processing.py 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. import json
  2. import logging
  3. import math
  4. import os
  5. import sys
  6. import hashlib
  7. import torch
  8. import numpy as np
  9. from PIL import Image, ImageFilter, ImageOps
  10. import random
  11. import cv2
  12. from skimage import exposure
  13. from typing import Any, Dict, List
  14. import modules.sd_hijack
  15. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
  16. from modules.sd_hijack import model_hijack
  17. from modules.shared import opts, cmd_opts, state
  18. import modules.shared as shared
  19. import modules.paths as paths
  20. import modules.face_restoration
  21. import modules.images as images
  22. import modules.styles
  23. import modules.sd_models as sd_models
  24. import modules.sd_vae as sd_vae
  25. from ldm.data.util import AddMiDaS
  26. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  27. from einops import repeat, rearrange
  28. from blendmodes.blend import blendLayers, BlendType
  29. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  30. opt_C = 4
  31. opt_f = 8
  32. def setup_color_correction(image):
  33. logging.info("Calibrating color correction.")
  34. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  35. return correction_target
  36. def apply_color_correction(correction, original_image):
  37. logging.info("Applying color correction.")
  38. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  39. cv2.cvtColor(
  40. np.asarray(original_image),
  41. cv2.COLOR_RGB2LAB
  42. ),
  43. correction,
  44. channel_axis=2
  45. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  46. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  47. return image
  48. def apply_overlay(image, paste_loc, index, overlays):
  49. if overlays is None or index >= len(overlays):
  50. return image
  51. overlay = overlays[index]
  52. if paste_loc is not None:
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', (overlay.width, overlay.height))
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. image = image.convert('RGBA')
  59. image.alpha_composite(overlay)
  60. image = image.convert('RGB')
  61. return image
  62. def txt2img_image_conditioning(sd_model, x, width, height):
  63. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  64. # The "masked-image" in this case will just be all zeros since the entire image is masked.
  65. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
  66. image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
  67. # Add the fake full 1s mask to the first dimension.
  68. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  69. image_conditioning = image_conditioning.to(x.dtype)
  70. return image_conditioning
  71. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  72. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  73. else:
  74. # Dummy zero conditioning if we're not using inpainting or unclip models.
  75. # Still takes up a bit of memory, but no encoder call.
  76. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  77. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  78. class StableDiffusionProcessing:
  79. """
  80. The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
  81. """
  82. def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
  83. if sampler_index is not None:
  84. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  85. self.outpath_samples: str = outpath_samples
  86. self.outpath_grids: str = outpath_grids
  87. self.prompt: str = prompt
  88. self.prompt_for_display: str = None
  89. self.negative_prompt: str = (negative_prompt or "")
  90. self.styles: list = styles or []
  91. self.seed: int = seed
  92. self.subseed: int = subseed
  93. self.subseed_strength: float = subseed_strength
  94. self.seed_resize_from_h: int = seed_resize_from_h
  95. self.seed_resize_from_w: int = seed_resize_from_w
  96. self.sampler_name: str = sampler_name
  97. self.batch_size: int = batch_size
  98. self.n_iter: int = n_iter
  99. self.steps: int = steps
  100. self.cfg_scale: float = cfg_scale
  101. self.width: int = width
  102. self.height: int = height
  103. self.restore_faces: bool = restore_faces
  104. self.tiling: bool = tiling
  105. self.do_not_save_samples: bool = do_not_save_samples
  106. self.do_not_save_grid: bool = do_not_save_grid
  107. self.extra_generation_params: dict = extra_generation_params or {}
  108. self.overlay_images = overlay_images
  109. self.eta = eta
  110. self.do_not_reload_embeddings = do_not_reload_embeddings
  111. self.paste_to = None
  112. self.color_corrections = None
  113. self.denoising_strength: float = denoising_strength
  114. self.sampler_noise_scheduler_override = None
  115. self.ddim_discretize = ddim_discretize or opts.ddim_discretize
  116. self.s_min_uncond = s_min_uncond or opts.s_min_uncond
  117. self.s_churn = s_churn or opts.s_churn
  118. self.s_tmin = s_tmin or opts.s_tmin
  119. self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
  120. self.s_noise = s_noise or opts.s_noise
  121. self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
  122. self.override_settings_restore_afterwards = override_settings_restore_afterwards
  123. self.is_using_inpainting_conditioning = False
  124. self.disable_extra_networks = False
  125. self.token_merging_ratio = 0
  126. self.token_merging_ratio_hr = 0
  127. if not seed_enable_extras:
  128. self.subseed = -1
  129. self.subseed_strength = 0
  130. self.seed_resize_from_h = 0
  131. self.seed_resize_from_w = 0
  132. self.scripts = None
  133. self.script_args = script_args
  134. self.all_prompts = None
  135. self.all_negative_prompts = None
  136. self.all_seeds = None
  137. self.all_subseeds = None
  138. self.iteration = 0
  139. self.is_hr_pass = False
  140. self.sampler = None
  141. self.prompts = None
  142. self.negative_prompts = None
  143. self.seeds = None
  144. self.subseeds = None
  145. self.step_multiplier = 1
  146. self.cached_uc = [None, None]
  147. self.cached_c = [None, None]
  148. self.uc = None
  149. self.c = None
  150. @property
  151. def sd_model(self):
  152. return shared.sd_model
  153. def txt2img_image_conditioning(self, x, width=None, height=None):
  154. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  155. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  156. def depth2img_image_conditioning(self, source_image):
  157. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  158. transformer = AddMiDaS(model_type="dpt_hybrid")
  159. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  160. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  161. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  162. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
  163. conditioning = torch.nn.functional.interpolate(
  164. self.sd_model.depth_model(midas_in),
  165. size=conditioning_image.shape[2:],
  166. mode="bicubic",
  167. align_corners=False,
  168. )
  169. (depth_min, depth_max) = torch.aminmax(conditioning)
  170. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  171. return conditioning
  172. def edit_image_conditioning(self, source_image):
  173. conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
  174. return conditioning_image
  175. def unclip_image_conditioning(self, source_image):
  176. c_adm = self.sd_model.embedder(source_image)
  177. if self.sd_model.noise_augmentor is not None:
  178. noise_level = 0 # TODO: Allow other noise levels?
  179. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  180. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  181. return c_adm
  182. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
  183. self.is_using_inpainting_conditioning = True
  184. # Handle the different mask inputs
  185. if image_mask is not None:
  186. if torch.is_tensor(image_mask):
  187. conditioning_mask = image_mask
  188. else:
  189. conditioning_mask = np.array(image_mask.convert("L"))
  190. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  191. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  192. # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
  193. conditioning_mask = torch.round(conditioning_mask)
  194. else:
  195. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  196. # Create another latent image, this time with a masked version of the original input.
  197. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  198. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  199. conditioning_image = torch.lerp(
  200. source_image,
  201. source_image * (1.0 - conditioning_mask),
  202. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  203. )
  204. # Encode the new masked image using first stage of network.
  205. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  206. # Create the concatenated conditioning tensor to be fed to `c_concat`
  207. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  208. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  209. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  210. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  211. return image_conditioning
  212. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
  213. source_image = devices.cond_cast_float(source_image)
  214. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  215. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  216. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  217. return self.depth2img_image_conditioning(source_image)
  218. if self.sd_model.cond_stage_key == "edit":
  219. return self.edit_image_conditioning(source_image)
  220. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  221. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  222. if self.sampler.conditioning_key == "crossattn-adm":
  223. return self.unclip_image_conditioning(source_image)
  224. # Dummy zero conditioning if we're not using inpainting or depth model.
  225. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  226. def init(self, all_prompts, all_seeds, all_subseeds):
  227. pass
  228. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  229. raise NotImplementedError()
  230. def close(self):
  231. self.sampler = None
  232. self.c = None
  233. self.uc = None
  234. self.cached_c = [None, None]
  235. self.cached_uc = [None, None]
  236. def get_token_merging_ratio(self, for_hr=False):
  237. if for_hr:
  238. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  239. return self.token_merging_ratio or opts.token_merging_ratio
  240. def setup_prompts(self):
  241. if type(self.prompt) == list:
  242. self.all_prompts = self.prompt
  243. else:
  244. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  245. if type(self.negative_prompt) == list:
  246. self.all_negative_prompts = self.negative_prompt
  247. else:
  248. self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
  249. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  250. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  251. def get_conds_with_caching(self, function, required_prompts, steps, cache):
  252. """
  253. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  254. using a cache to store the result if the same arguments have been used before.
  255. cache is an array containing two elements. The first element is a tuple
  256. representing the previously used arguments, or None if no arguments
  257. have been used before. The second element is where the previously
  258. computed result is stored.
  259. """
  260. if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) == cache[0]:
  261. return cache[1]
  262. with devices.autocast():
  263. cache[1] = function(shared.sd_model, required_prompts, steps)
  264. cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info)
  265. return cache[1]
  266. def setup_conds(self):
  267. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  268. self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
  269. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
  270. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
  271. def parse_extra_network_prompts(self):
  272. self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts)
  273. return extra_network_data
  274. class Processed:
  275. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  276. self.images = images_list
  277. self.prompt = p.prompt
  278. self.negative_prompt = p.negative_prompt
  279. self.seed = seed
  280. self.subseed = subseed
  281. self.subseed_strength = p.subseed_strength
  282. self.info = info
  283. self.comments = comments
  284. self.width = p.width
  285. self.height = p.height
  286. self.sampler_name = p.sampler_name
  287. self.cfg_scale = p.cfg_scale
  288. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  289. self.steps = p.steps
  290. self.batch_size = p.batch_size
  291. self.restore_faces = p.restore_faces
  292. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  293. self.sd_model_hash = shared.sd_model.sd_model_hash
  294. self.seed_resize_from_w = p.seed_resize_from_w
  295. self.seed_resize_from_h = p.seed_resize_from_h
  296. self.denoising_strength = getattr(p, 'denoising_strength', None)
  297. self.extra_generation_params = p.extra_generation_params
  298. self.index_of_first_image = index_of_first_image
  299. self.styles = p.styles
  300. self.job_timestamp = state.job_timestamp
  301. self.clip_skip = opts.CLIP_stop_at_last_layers
  302. self.token_merging_ratio = p.token_merging_ratio
  303. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  304. self.eta = p.eta
  305. self.ddim_discretize = p.ddim_discretize
  306. self.s_churn = p.s_churn
  307. self.s_tmin = p.s_tmin
  308. self.s_tmax = p.s_tmax
  309. self.s_noise = p.s_noise
  310. self.s_min_uncond = p.s_min_uncond
  311. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  312. self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
  313. self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
  314. self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
  315. self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
  316. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  317. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  318. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  319. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  320. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  321. self.infotexts = infotexts or [info]
  322. def js(self):
  323. obj = {
  324. "prompt": self.all_prompts[0],
  325. "all_prompts": self.all_prompts,
  326. "negative_prompt": self.all_negative_prompts[0],
  327. "all_negative_prompts": self.all_negative_prompts,
  328. "seed": self.seed,
  329. "all_seeds": self.all_seeds,
  330. "subseed": self.subseed,
  331. "all_subseeds": self.all_subseeds,
  332. "subseed_strength": self.subseed_strength,
  333. "width": self.width,
  334. "height": self.height,
  335. "sampler_name": self.sampler_name,
  336. "cfg_scale": self.cfg_scale,
  337. "steps": self.steps,
  338. "batch_size": self.batch_size,
  339. "restore_faces": self.restore_faces,
  340. "face_restoration_model": self.face_restoration_model,
  341. "sd_model_hash": self.sd_model_hash,
  342. "seed_resize_from_w": self.seed_resize_from_w,
  343. "seed_resize_from_h": self.seed_resize_from_h,
  344. "denoising_strength": self.denoising_strength,
  345. "extra_generation_params": self.extra_generation_params,
  346. "index_of_first_image": self.index_of_first_image,
  347. "infotexts": self.infotexts,
  348. "styles": self.styles,
  349. "job_timestamp": self.job_timestamp,
  350. "clip_skip": self.clip_skip,
  351. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  352. }
  353. return json.dumps(obj)
  354. def infotext(self, p: StableDiffusionProcessing, index):
  355. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  356. def get_token_merging_ratio(self, for_hr=False):
  357. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  358. # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
  359. def slerp(val, low, high):
  360. low_norm = low/torch.norm(low, dim=1, keepdim=True)
  361. high_norm = high/torch.norm(high, dim=1, keepdim=True)
  362. dot = (low_norm*high_norm).sum(1)
  363. if dot.mean() > 0.9995:
  364. return low * val + high * (1 - val)
  365. omega = torch.acos(dot)
  366. so = torch.sin(omega)
  367. res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
  368. return res
  369. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  370. eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
  371. xs = []
  372. # if we have multiple seeds, this means we are working with batch size>1; this then
  373. # enables the generation of additional tensors with noise that the sampler will use during its processing.
  374. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
  375. # produce the same images as with two batches [100], [101].
  376. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
  377. sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
  378. else:
  379. sampler_noises = None
  380. for i, seed in enumerate(seeds):
  381. noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
  382. subnoise = None
  383. if subseeds is not None:
  384. subseed = 0 if i >= len(subseeds) else subseeds[i]
  385. subnoise = devices.randn(subseed, noise_shape)
  386. # randn results depend on device; gpu and cpu get different results for same seed;
  387. # the way I see it, it's better to do this on CPU, so that everyone gets same result;
  388. # but the original script had it like this, so I do not dare change it for now because
  389. # it will break everyone's seeds.
  390. noise = devices.randn(seed, noise_shape)
  391. if subnoise is not None:
  392. noise = slerp(subseed_strength, noise, subnoise)
  393. if noise_shape != shape:
  394. x = devices.randn(seed, shape)
  395. dx = (shape[2] - noise_shape[2]) // 2
  396. dy = (shape[1] - noise_shape[1]) // 2
  397. w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
  398. h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
  399. tx = 0 if dx < 0 else dx
  400. ty = 0 if dy < 0 else dy
  401. dx = max(-dx, 0)
  402. dy = max(-dy, 0)
  403. x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
  404. noise = x
  405. if sampler_noises is not None:
  406. cnt = p.sampler.number_of_needed_noises(p)
  407. if eta_noise_seed_delta > 0:
  408. torch.manual_seed(seed + eta_noise_seed_delta)
  409. for j in range(cnt):
  410. sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
  411. xs.append(noise)
  412. if sampler_noises is not None:
  413. p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
  414. x = torch.stack(xs).to(shared.device)
  415. return x
  416. def decode_first_stage(model, x):
  417. with devices.autocast(disable=x.dtype == devices.dtype_vae):
  418. x = model.decode_first_stage(x)
  419. return x
  420. def get_fixed_seed(seed):
  421. if seed is None or seed == '' or seed == -1:
  422. return int(random.randrange(4294967294))
  423. return seed
  424. def fix_seed(p):
  425. p.seed = get_fixed_seed(p.seed)
  426. p.subseed = get_fixed_seed(p.subseed)
  427. def program_version():
  428. import launch
  429. res = launch.git_tag()
  430. if res == "<none>":
  431. res = None
  432. return res
  433. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
  434. index = position_in_batch + iteration * p.batch_size
  435. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  436. enable_hr = getattr(p, 'enable_hr', False)
  437. token_merging_ratio = p.get_token_merging_ratio()
  438. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  439. uses_ensd = opts.eta_noise_seed_delta != 0
  440. if uses_ensd:
  441. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  442. generation_params = {
  443. "Steps": p.steps,
  444. "Sampler": p.sampler_name,
  445. "CFG scale": p.cfg_scale,
  446. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  447. "Seed": all_seeds[index],
  448. "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
  449. "Size": f"{p.width}x{p.height}",
  450. "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
  451. "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
  452. "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
  453. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  454. "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  455. "Denoising strength": getattr(p, 'denoising_strength', None),
  456. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  457. "Clip skip": None if clip_skip <= 1 else clip_skip,
  458. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  459. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  460. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  461. "Init image hash": getattr(p, 'init_img_hash', None),
  462. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  463. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  464. **p.extra_generation_params,
  465. "Version": program_version() if opts.add_version_to_infotext else None,
  466. }
  467. generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
  468. negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
  469. return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
  470. def process_images(p: StableDiffusionProcessing) -> Processed:
  471. if p.scripts is not None:
  472. p.scripts.before_process(p)
  473. stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
  474. try:
  475. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  476. override_checkpoint = p.override_settings.get('sd_model_checkpoint')
  477. if override_checkpoint is not None and sd_models.checkpoint_alisases.get(override_checkpoint) is None:
  478. p.override_settings.pop('sd_model_checkpoint', None)
  479. sd_models.reload_model_weights()
  480. for k, v in p.override_settings.items():
  481. setattr(opts, k, v)
  482. if k == 'sd_model_checkpoint':
  483. sd_models.reload_model_weights()
  484. if k == 'sd_vae':
  485. sd_vae.reload_vae_weights()
  486. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  487. res = process_images_inner(p)
  488. finally:
  489. sd_models.apply_token_merging(p.sd_model, 0)
  490. # restore opts to original state
  491. if p.override_settings_restore_afterwards:
  492. for k, v in stored_opts.items():
  493. setattr(opts, k, v)
  494. if k == 'sd_vae':
  495. sd_vae.reload_vae_weights()
  496. return res
  497. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  498. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  499. if type(p.prompt) == list:
  500. assert(len(p.prompt) > 0)
  501. else:
  502. assert p.prompt is not None
  503. devices.torch_gc()
  504. seed = get_fixed_seed(p.seed)
  505. subseed = get_fixed_seed(p.subseed)
  506. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  507. modules.sd_hijack.model_hijack.clear_comments()
  508. comments = {}
  509. p.setup_prompts()
  510. if type(seed) == list:
  511. p.all_seeds = seed
  512. else:
  513. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  514. if type(subseed) == list:
  515. p.all_subseeds = subseed
  516. else:
  517. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  518. def infotext(iteration=0, position_in_batch=0):
  519. return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
  520. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  521. model_hijack.embedding_db.load_textual_inversion_embeddings()
  522. if p.scripts is not None:
  523. p.scripts.process(p)
  524. infotexts = []
  525. output_images = []
  526. with torch.no_grad(), p.sd_model.ema_scope():
  527. with devices.autocast():
  528. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  529. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  530. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  531. sd_vae_approx.model()
  532. sd_unet.apply_unet()
  533. if state.job_count == -1:
  534. state.job_count = p.n_iter
  535. extra_network_data = None
  536. for n in range(p.n_iter):
  537. p.iteration = n
  538. if state.skipped:
  539. state.skipped = False
  540. if state.interrupted:
  541. break
  542. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  543. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  544. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  545. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  546. if p.scripts is not None:
  547. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  548. if len(p.prompts) == 0:
  549. break
  550. extra_network_data = p.parse_extra_network_prompts()
  551. if not p.disable_extra_networks:
  552. with devices.autocast():
  553. extra_networks.activate(p, extra_network_data)
  554. if p.scripts is not None:
  555. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  556. # params.txt should be saved after scripts.process_batch, since the
  557. # infotext could be modified by that callback
  558. # Example: a wildcard processed by process_batch sets an extra model
  559. # strength, which is saved as "Model Strength: 1.0" in the infotext
  560. if n == 0:
  561. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  562. processed = Processed(p, [], p.seed, "")
  563. file.write(processed.infotext(p, 0))
  564. p.setup_conds()
  565. if len(model_hijack.comments) > 0:
  566. for comment in model_hijack.comments:
  567. comments[comment] = 1
  568. if p.n_iter > 1:
  569. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  570. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  571. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  572. x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
  573. for x in x_samples_ddim:
  574. devices.test_for_nans(x, "vae")
  575. x_samples_ddim = torch.stack(x_samples_ddim).float()
  576. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  577. del samples_ddim
  578. if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
  579. lowvram.send_everything_to_cpu()
  580. devices.torch_gc()
  581. if p.scripts is not None:
  582. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  583. for i, x_sample in enumerate(x_samples_ddim):
  584. p.batch_index = i
  585. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  586. x_sample = x_sample.astype(np.uint8)
  587. if p.restore_faces:
  588. if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
  589. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
  590. devices.torch_gc()
  591. x_sample = modules.face_restoration.restore_faces(x_sample)
  592. devices.torch_gc()
  593. image = Image.fromarray(x_sample)
  594. if p.scripts is not None:
  595. pp = scripts.PostprocessImageArgs(image)
  596. p.scripts.postprocess_image(p, pp)
  597. image = pp.image
  598. if p.color_corrections is not None and i < len(p.color_corrections):
  599. if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
  600. image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
  601. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
  602. image = apply_color_correction(p.color_corrections[i], image)
  603. image = apply_overlay(image, p.paste_to, i, p.overlay_images)
  604. if opts.samples_save and not p.do_not_save_samples:
  605. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
  606. text = infotext(n, i)
  607. infotexts.append(text)
  608. if opts.enable_pnginfo:
  609. image.info["parameters"] = text
  610. output_images.append(image)
  611. if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
  612. image_mask = p.mask_for_overlay.convert('RGB')
  613. image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  614. if opts.save_mask:
  615. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
  616. if opts.save_mask_composite:
  617. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
  618. if opts.return_mask:
  619. output_images.append(image_mask)
  620. if opts.return_mask_composite:
  621. output_images.append(image_mask_composite)
  622. del x_samples_ddim
  623. devices.torch_gc()
  624. state.nextjob()
  625. p.color_corrections = None
  626. index_of_first_image = 0
  627. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  628. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  629. grid = images.image_grid(output_images, p.batch_size)
  630. if opts.return_grid:
  631. text = infotext()
  632. infotexts.insert(0, text)
  633. if opts.enable_pnginfo:
  634. grid.info["parameters"] = text
  635. output_images.insert(0, grid)
  636. index_of_first_image = 1
  637. if opts.grid_save:
  638. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  639. if not p.disable_extra_networks and extra_network_data:
  640. extra_networks.deactivate(p, extra_network_data)
  641. devices.torch_gc()
  642. res = Processed(
  643. p,
  644. images_list=output_images,
  645. seed=p.all_seeds[0],
  646. info=infotext(),
  647. comments="".join(f"{comment}\n" for comment in comments),
  648. subseed=p.all_subseeds[0],
  649. index_of_first_image=index_of_first_image,
  650. infotexts=infotexts,
  651. )
  652. if p.scripts is not None:
  653. p.scripts.postprocess(p, res)
  654. return res
  655. def old_hires_fix_first_pass_dimensions(width, height):
  656. """old algorithm for auto-calculating first pass size"""
  657. desired_pixel_count = 512 * 512
  658. actual_pixel_count = width * height
  659. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  660. width = math.ceil(scale * width / 64) * 64
  661. height = math.ceil(scale * height / 64) * 64
  662. return width, height
  663. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  664. sampler = None
  665. def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
  666. super().__init__(**kwargs)
  667. self.enable_hr = enable_hr
  668. self.denoising_strength = denoising_strength
  669. self.hr_scale = hr_scale
  670. self.hr_upscaler = hr_upscaler
  671. self.hr_second_pass_steps = hr_second_pass_steps
  672. self.hr_resize_x = hr_resize_x
  673. self.hr_resize_y = hr_resize_y
  674. self.hr_upscale_to_x = hr_resize_x
  675. self.hr_upscale_to_y = hr_resize_y
  676. self.hr_sampler_name = hr_sampler_name
  677. self.hr_prompt = hr_prompt
  678. self.hr_negative_prompt = hr_negative_prompt
  679. self.all_hr_prompts = None
  680. self.all_hr_negative_prompts = None
  681. if firstphase_width != 0 or firstphase_height != 0:
  682. self.hr_upscale_to_x = self.width
  683. self.hr_upscale_to_y = self.height
  684. self.width = firstphase_width
  685. self.height = firstphase_height
  686. self.truncate_x = 0
  687. self.truncate_y = 0
  688. self.applied_old_hires_behavior_to = None
  689. self.hr_prompts = None
  690. self.hr_negative_prompts = None
  691. self.hr_extra_network_data = None
  692. self.hr_c = None
  693. self.hr_uc = None
  694. def init(self, all_prompts, all_seeds, all_subseeds):
  695. if self.enable_hr:
  696. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  697. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  698. if tuple(self.hr_prompt) != tuple(self.prompt):
  699. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  700. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  701. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  702. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  703. self.hr_resize_x = self.width
  704. self.hr_resize_y = self.height
  705. self.hr_upscale_to_x = self.width
  706. self.hr_upscale_to_y = self.height
  707. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  708. self.applied_old_hires_behavior_to = (self.width, self.height)
  709. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  710. self.extra_generation_params["Hires upscale"] = self.hr_scale
  711. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  712. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  713. else:
  714. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  715. if self.hr_resize_y == 0:
  716. self.hr_upscale_to_x = self.hr_resize_x
  717. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  718. elif self.hr_resize_x == 0:
  719. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  720. self.hr_upscale_to_y = self.hr_resize_y
  721. else:
  722. target_w = self.hr_resize_x
  723. target_h = self.hr_resize_y
  724. src_ratio = self.width / self.height
  725. dst_ratio = self.hr_resize_x / self.hr_resize_y
  726. if src_ratio < dst_ratio:
  727. self.hr_upscale_to_x = self.hr_resize_x
  728. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  729. else:
  730. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  731. self.hr_upscale_to_y = self.hr_resize_y
  732. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  733. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  734. # special case: the user has chosen to do nothing
  735. if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
  736. self.enable_hr = False
  737. self.denoising_strength = None
  738. self.extra_generation_params.pop("Hires upscale", None)
  739. self.extra_generation_params.pop("Hires resize", None)
  740. return
  741. if not state.processing_has_refined_job_count:
  742. if state.job_count == -1:
  743. state.job_count = self.n_iter
  744. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  745. state.job_count = state.job_count * 2
  746. state.processing_has_refined_job_count = True
  747. if self.hr_second_pass_steps:
  748. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  749. if self.hr_upscaler is not None:
  750. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  751. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  752. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  753. latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  754. if self.enable_hr and latent_scale_mode is None:
  755. assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
  756. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  757. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  758. if not self.enable_hr:
  759. return samples
  760. self.is_hr_pass = True
  761. target_width = self.hr_upscale_to_x
  762. target_height = self.hr_upscale_to_y
  763. def save_intermediate(image, index):
  764. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  765. if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
  766. return
  767. if not isinstance(image, Image.Image):
  768. image = sd_samplers.sample_to_image(image, index, approximation=0)
  769. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  770. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
  771. if latent_scale_mode is not None:
  772. for i in range(samples.shape[0]):
  773. save_intermediate(samples, i)
  774. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
  775. # Avoid making the inpainting conditioning unless necessary as
  776. # this does need some extra compute to decode / encode the image again.
  777. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  778. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  779. else:
  780. image_conditioning = self.txt2img_image_conditioning(samples)
  781. else:
  782. decoded_samples = decode_first_stage(self.sd_model, samples)
  783. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  784. batch_images = []
  785. for i, x_sample in enumerate(lowres_samples):
  786. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  787. x_sample = x_sample.astype(np.uint8)
  788. image = Image.fromarray(x_sample)
  789. save_intermediate(image, i)
  790. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  791. image = np.array(image).astype(np.float32) / 255.0
  792. image = np.moveaxis(image, 2, 0)
  793. batch_images.append(image)
  794. decoded_samples = torch.from_numpy(np.array(batch_images))
  795. decoded_samples = decoded_samples.to(shared.device)
  796. decoded_samples = 2. * decoded_samples - 1.
  797. samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
  798. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  799. shared.state.nextjob()
  800. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  801. if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
  802. img2img_sampler_name = 'DDIM'
  803. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  804. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  805. noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
  806. # GC now before running the next img2img to prevent running out of memory
  807. x = None
  808. devices.torch_gc()
  809. if not self.disable_extra_networks:
  810. with devices.autocast():
  811. extra_networks.activate(self, self.hr_extra_network_data)
  812. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  813. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  814. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  815. self.is_hr_pass = False
  816. return samples
  817. def close(self):
  818. self.hr_c = None
  819. self.hr_uc = None
  820. def setup_prompts(self):
  821. super().setup_prompts()
  822. if not self.enable_hr:
  823. return
  824. if self.hr_prompt == '':
  825. self.hr_prompt = self.prompt
  826. if self.hr_negative_prompt == '':
  827. self.hr_negative_prompt = self.negative_prompt
  828. if type(self.hr_prompt) == list:
  829. self.all_hr_prompts = self.hr_prompt
  830. else:
  831. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  832. if type(self.hr_negative_prompt) == list:
  833. self.all_hr_negative_prompts = self.hr_negative_prompt
  834. else:
  835. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  836. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  837. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  838. def setup_conds(self):
  839. super().setup_conds()
  840. if self.enable_hr:
  841. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc)
  842. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c)
  843. def parse_extra_network_prompts(self):
  844. res = super().parse_extra_network_prompts()
  845. if self.enable_hr:
  846. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  847. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  848. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  849. return res
  850. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  851. sampler = None
  852. def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
  853. super().__init__(**kwargs)
  854. self.init_images = init_images
  855. self.resize_mode: int = resize_mode
  856. self.denoising_strength: float = denoising_strength
  857. self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  858. self.init_latent = None
  859. self.image_mask = mask
  860. self.latent_mask = None
  861. self.mask_for_overlay = None
  862. self.mask_blur = mask_blur
  863. self.inpainting_fill = inpainting_fill
  864. self.inpaint_full_res = inpaint_full_res
  865. self.inpaint_full_res_padding = inpaint_full_res_padding
  866. self.inpainting_mask_invert = inpainting_mask_invert
  867. self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
  868. self.mask = None
  869. self.nmask = None
  870. self.image_conditioning = None
  871. def init(self, all_prompts, all_seeds, all_subseeds):
  872. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  873. crop_region = None
  874. image_mask = self.image_mask
  875. if image_mask is not None:
  876. image_mask = image_mask.convert('L')
  877. if self.inpainting_mask_invert:
  878. image_mask = ImageOps.invert(image_mask)
  879. if self.mask_blur > 0:
  880. image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
  881. if self.inpaint_full_res:
  882. self.mask_for_overlay = image_mask
  883. mask = image_mask.convert('L')
  884. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  885. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  886. x1, y1, x2, y2 = crop_region
  887. mask = mask.crop(crop_region)
  888. image_mask = images.resize_image(2, mask, self.width, self.height)
  889. self.paste_to = (x1, y1, x2-x1, y2-y1)
  890. else:
  891. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  892. np_mask = np.array(image_mask)
  893. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  894. self.mask_for_overlay = Image.fromarray(np_mask)
  895. self.overlay_images = []
  896. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  897. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  898. if add_color_corrections:
  899. self.color_corrections = []
  900. imgs = []
  901. for img in self.init_images:
  902. # Save init image
  903. if opts.save_init_img:
  904. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  905. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
  906. image = images.flatten(img, opts.img2img_background_color)
  907. if crop_region is None and self.resize_mode != 3:
  908. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  909. if image_mask is not None:
  910. image_masked = Image.new('RGBa', (image.width, image.height))
  911. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  912. self.overlay_images.append(image_masked.convert('RGBA'))
  913. # crop_region is not None if we are doing inpaint full res
  914. if crop_region is not None:
  915. image = image.crop(crop_region)
  916. image = images.resize_image(2, image, self.width, self.height)
  917. if image_mask is not None:
  918. if self.inpainting_fill != 1:
  919. image = masking.fill(image, latent_mask)
  920. if add_color_corrections:
  921. self.color_corrections.append(setup_color_correction(image))
  922. image = np.array(image).astype(np.float32) / 255.0
  923. image = np.moveaxis(image, 2, 0)
  924. imgs.append(image)
  925. if len(imgs) == 1:
  926. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  927. if self.overlay_images is not None:
  928. self.overlay_images = self.overlay_images * self.batch_size
  929. if self.color_corrections is not None and len(self.color_corrections) == 1:
  930. self.color_corrections = self.color_corrections * self.batch_size
  931. elif len(imgs) <= self.batch_size:
  932. self.batch_size = len(imgs)
  933. batch_images = np.array(imgs)
  934. else:
  935. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  936. image = torch.from_numpy(batch_images)
  937. image = 2. * image - 1.
  938. image = image.to(shared.device)
  939. self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
  940. if self.resize_mode == 3:
  941. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  942. if image_mask is not None:
  943. init_mask = latent_mask
  944. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  945. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  946. latmask = latmask[0]
  947. latmask = np.around(latmask)
  948. latmask = np.tile(latmask[None], (4, 1, 1))
  949. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  950. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  951. # this needs to be fixed to be done in sample() using actual seeds for batches
  952. if self.inpainting_fill == 2:
  953. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  954. elif self.inpainting_fill == 3:
  955. self.init_latent = self.init_latent * self.mask
  956. self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
  957. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  958. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  959. if self.initial_noise_multiplier != 1.0:
  960. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  961. x *= self.initial_noise_multiplier
  962. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  963. if self.mask is not None:
  964. samples = samples * self.nmask + self.init_latent * self.mask
  965. del x
  966. devices.torch_gc()
  967. return samples
  968. def get_token_merging_ratio(self, for_hr=False):
  969. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio