loopback.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. import numpy as np
  2. from tqdm import trange
  3. import modules.scripts as scripts
  4. import gradio as gr
  5. from modules import processing, shared, sd_samplers, images
  6. from modules.processing import Processed
  7. from modules.sd_samplers import samplers
  8. from modules.shared import opts, cmd_opts, state
  9. class Script(scripts.Script):
  10. def title(self):
  11. return "Loopback"
  12. def show(self, is_img2img):
  13. return is_img2img
  14. def ui(self, is_img2img):
  15. loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4)
  16. denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1)
  17. return [loops, denoising_strength_change_factor]
  18. def run(self, p, loops, denoising_strength_change_factor):
  19. processing.fix_seed(p)
  20. batch_count = p.n_iter
  21. p.extra_generation_params = {
  22. "Denoising strength change factor": denoising_strength_change_factor,
  23. }
  24. p.batch_size = 1
  25. p.n_iter = 1
  26. output_images, info = None, None
  27. initial_seed = None
  28. initial_info = None
  29. grids = []
  30. all_images = []
  31. original_init_image = p.init_images
  32. state.job_count = loops * batch_count
  33. initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
  34. for n in range(batch_count):
  35. history = []
  36. # Reset to original init image at the start of each batch
  37. p.init_images = original_init_image
  38. for i in range(loops):
  39. p.n_iter = 1
  40. p.batch_size = 1
  41. p.do_not_save_grid = True
  42. if opts.img2img_color_correction:
  43. p.color_corrections = initial_color_corrections
  44. state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
  45. processed = processing.process_images(p)
  46. if initial_seed is None:
  47. initial_seed = processed.seed
  48. initial_info = processed.info
  49. init_img = processed.images[0]
  50. p.init_images = [init_img]
  51. p.seed = processed.seed + 1
  52. p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
  53. history.append(processed.images[0])
  54. grid = images.image_grid(history, rows=1)
  55. if opts.grid_save:
  56. images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
  57. grids.append(grid)
  58. all_images += history
  59. if opts.return_grid:
  60. all_images = grids + all_images
  61. processed = Processed(p, all_images, initial_seed, initial_info)
  62. return processed