processing.py 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607
  1. from __future__ import annotations
  2. import json
  3. import logging
  4. import math
  5. import os
  6. import sys
  7. import hashlib
  8. from dataclasses import dataclass, field
  9. import torch
  10. import numpy as np
  11. from PIL import Image, ImageOps
  12. import random
  13. import cv2
  14. from skimage import exposure
  15. from typing import Any
  16. import modules.sd_hijack
  17. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
  18. from modules.rng import slerp # noqa: F401
  19. from modules.sd_hijack import model_hijack
  20. from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
  21. from modules.shared import opts, cmd_opts, state
  22. import modules.shared as shared
  23. import modules.paths as paths
  24. import modules.face_restoration
  25. import modules.images as images
  26. import modules.styles
  27. import modules.sd_models as sd_models
  28. import modules.sd_vae as sd_vae
  29. from ldm.data.util import AddMiDaS
  30. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  31. from einops import repeat, rearrange
  32. from blendmodes.blend import blendLayers, BlendType
  33. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  34. opt_C = 4
  35. opt_f = 8
  36. def setup_color_correction(image):
  37. logging.info("Calibrating color correction.")
  38. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  39. return correction_target
  40. def apply_color_correction(correction, original_image):
  41. logging.info("Applying color correction.")
  42. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  43. cv2.cvtColor(
  44. np.asarray(original_image),
  45. cv2.COLOR_RGB2LAB
  46. ),
  47. correction,
  48. channel_axis=2
  49. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  50. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  51. return image.convert('RGB')
  52. def uncrop(image, dest_size, paste_loc):
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', dest_size)
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. return image
  59. def apply_overlay(image, paste_loc, overlay):
  60. if overlay is None:
  61. return image
  62. if paste_loc is not None:
  63. image = uncrop(image, (overlay.width, overlay.height), paste_loc)
  64. image = image.convert('RGBA')
  65. image.alpha_composite(overlay)
  66. image = image.convert('RGB')
  67. return image
  68. def create_binary_mask(image, round=True):
  69. if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
  70. if round:
  71. image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
  72. else:
  73. image = image.split()[-1].convert("L")
  74. else:
  75. image = image.convert('L')
  76. return image
  77. def txt2img_image_conditioning(sd_model, x, width, height):
  78. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  79. # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
  80. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
  81. image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method))
  82. # Add the fake full 1s mask to the first dimension.
  83. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  84. image_conditioning = image_conditioning.to(x.dtype)
  85. return image_conditioning
  86. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  87. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  88. else:
  89. sd = sd_model.model.state_dict()
  90. diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
  91. if diffusion_model_input is not None:
  92. if diffusion_model_input.shape[1] == 9:
  93. # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
  94. image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
  95. image_conditioning = images_tensor_to_samples(image_conditioning,
  96. approximation_indexes.get(opts.sd_vae_encode_method))
  97. # Add the fake full 1s mask to the first dimension.
  98. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  99. image_conditioning = image_conditioning.to(x.dtype)
  100. return image_conditioning
  101. # Dummy zero conditioning if we're not using inpainting or unclip models.
  102. # Still takes up a bit of memory, but no encoder call.
  103. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  104. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  105. @dataclass(repr=False)
  106. class StableDiffusionProcessing:
  107. sd_model: object = None
  108. outpath_samples: str = None
  109. outpath_grids: str = None
  110. prompt: str = ""
  111. prompt_for_display: str = None
  112. negative_prompt: str = ""
  113. styles: list[str] = None
  114. seed: int = -1
  115. subseed: int = -1
  116. subseed_strength: float = 0
  117. seed_resize_from_h: int = -1
  118. seed_resize_from_w: int = -1
  119. seed_enable_extras: bool = True
  120. sampler_name: str = None
  121. batch_size: int = 1
  122. n_iter: int = 1
  123. steps: int = 50
  124. cfg_scale: float = 7.0
  125. width: int = 512
  126. height: int = 512
  127. restore_faces: bool = None
  128. tiling: bool = None
  129. do_not_save_samples: bool = False
  130. do_not_save_grid: bool = False
  131. extra_generation_params: dict[str, Any] = None
  132. overlay_images: list = None
  133. eta: float = None
  134. do_not_reload_embeddings: bool = False
  135. denoising_strength: float = None
  136. ddim_discretize: str = None
  137. s_min_uncond: float = None
  138. s_churn: float = None
  139. s_tmax: float = None
  140. s_tmin: float = None
  141. s_noise: float = None
  142. override_settings: dict[str, Any] = None
  143. override_settings_restore_afterwards: bool = True
  144. sampler_index: int = None
  145. refiner_checkpoint: str = None
  146. refiner_switch_at: float = None
  147. token_merging_ratio = 0
  148. token_merging_ratio_hr = 0
  149. disable_extra_networks: bool = False
  150. scripts_value: scripts.ScriptRunner = field(default=None, init=False)
  151. script_args_value: list = field(default=None, init=False)
  152. scripts_setup_complete: bool = field(default=False, init=False)
  153. cached_uc = [None, None]
  154. cached_c = [None, None]
  155. comments: dict = None
  156. sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
  157. is_using_inpainting_conditioning: bool = field(default=False, init=False)
  158. paste_to: tuple | None = field(default=None, init=False)
  159. is_hr_pass: bool = field(default=False, init=False)
  160. c: tuple = field(default=None, init=False)
  161. uc: tuple = field(default=None, init=False)
  162. rng: rng.ImageRNG | None = field(default=None, init=False)
  163. step_multiplier: int = field(default=1, init=False)
  164. color_corrections: list = field(default=None, init=False)
  165. all_prompts: list = field(default=None, init=False)
  166. all_negative_prompts: list = field(default=None, init=False)
  167. all_seeds: list = field(default=None, init=False)
  168. all_subseeds: list = field(default=None, init=False)
  169. iteration: int = field(default=0, init=False)
  170. main_prompt: str = field(default=None, init=False)
  171. main_negative_prompt: str = field(default=None, init=False)
  172. prompts: list = field(default=None, init=False)
  173. negative_prompts: list = field(default=None, init=False)
  174. seeds: list = field(default=None, init=False)
  175. subseeds: list = field(default=None, init=False)
  176. extra_network_data: dict = field(default=None, init=False)
  177. user: str = field(default=None, init=False)
  178. sd_model_name: str = field(default=None, init=False)
  179. sd_model_hash: str = field(default=None, init=False)
  180. sd_vae_name: str = field(default=None, init=False)
  181. sd_vae_hash: str = field(default=None, init=False)
  182. is_api: bool = field(default=False, init=False)
  183. def __post_init__(self):
  184. if self.sampler_index is not None:
  185. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  186. self.comments = {}
  187. if self.styles is None:
  188. self.styles = []
  189. self.sampler_noise_scheduler_override = None
  190. self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
  191. self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
  192. self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
  193. self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
  194. self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
  195. self.extra_generation_params = self.extra_generation_params or {}
  196. self.override_settings = self.override_settings or {}
  197. self.script_args = self.script_args or {}
  198. self.refiner_checkpoint_info = None
  199. if not self.seed_enable_extras:
  200. self.subseed = -1
  201. self.subseed_strength = 0
  202. self.seed_resize_from_h = 0
  203. self.seed_resize_from_w = 0
  204. self.cached_uc = StableDiffusionProcessing.cached_uc
  205. self.cached_c = StableDiffusionProcessing.cached_c
  206. @property
  207. def sd_model(self):
  208. return shared.sd_model
  209. @sd_model.setter
  210. def sd_model(self, value):
  211. pass
  212. @property
  213. def scripts(self):
  214. return self.scripts_value
  215. @scripts.setter
  216. def scripts(self, value):
  217. self.scripts_value = value
  218. if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
  219. self.setup_scripts()
  220. @property
  221. def script_args(self):
  222. return self.script_args_value
  223. @script_args.setter
  224. def script_args(self, value):
  225. self.script_args_value = value
  226. if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
  227. self.setup_scripts()
  228. def setup_scripts(self):
  229. self.scripts_setup_complete = True
  230. self.scripts.setup_scrips(self, is_ui=not self.is_api)
  231. def comment(self, text):
  232. self.comments[text] = 1
  233. def txt2img_image_conditioning(self, x, width=None, height=None):
  234. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  235. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  236. def depth2img_image_conditioning(self, source_image):
  237. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  238. transformer = AddMiDaS(model_type="dpt_hybrid")
  239. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  240. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  241. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  242. conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method))
  243. conditioning = torch.nn.functional.interpolate(
  244. self.sd_model.depth_model(midas_in),
  245. size=conditioning_image.shape[2:],
  246. mode="bicubic",
  247. align_corners=False,
  248. )
  249. (depth_min, depth_max) = torch.aminmax(conditioning)
  250. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  251. return conditioning
  252. def edit_image_conditioning(self, source_image):
  253. conditioning_image = shared.sd_model.encode_first_stage(source_image).mode()
  254. return conditioning_image
  255. def unclip_image_conditioning(self, source_image):
  256. c_adm = self.sd_model.embedder(source_image)
  257. if self.sd_model.noise_augmentor is not None:
  258. noise_level = 0 # TODO: Allow other noise levels?
  259. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  260. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  261. return c_adm
  262. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
  263. self.is_using_inpainting_conditioning = True
  264. # Handle the different mask inputs
  265. if image_mask is not None:
  266. if torch.is_tensor(image_mask):
  267. conditioning_mask = image_mask
  268. else:
  269. conditioning_mask = np.array(image_mask.convert("L"))
  270. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  271. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  272. if round_image_mask:
  273. # Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
  274. conditioning_mask = torch.round(conditioning_mask)
  275. else:
  276. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  277. # Create another latent image, this time with a masked version of the original input.
  278. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  279. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  280. conditioning_image = torch.lerp(
  281. source_image,
  282. source_image * (1.0 - conditioning_mask),
  283. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  284. )
  285. # Encode the new masked image using first stage of network.
  286. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  287. # Create the concatenated conditioning tensor to be fed to `c_concat`
  288. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  289. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  290. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  291. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  292. return image_conditioning
  293. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
  294. source_image = devices.cond_cast_float(source_image)
  295. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  296. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  297. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  298. return self.depth2img_image_conditioning(source_image)
  299. if self.sd_model.cond_stage_key == "edit":
  300. return self.edit_image_conditioning(source_image)
  301. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  302. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
  303. if self.sampler.conditioning_key == "crossattn-adm":
  304. return self.unclip_image_conditioning(source_image)
  305. sd = self.sampler.model_wrap.inner_model.model.state_dict()
  306. diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
  307. if diffusion_model_input is not None:
  308. if diffusion_model_input.shape[1] == 9:
  309. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  310. # Dummy zero conditioning if we're not using inpainting or depth model.
  311. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  312. def init(self, all_prompts, all_seeds, all_subseeds):
  313. pass
  314. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  315. raise NotImplementedError()
  316. def close(self):
  317. self.sampler = None
  318. self.c = None
  319. self.uc = None
  320. if not opts.persistent_cond_cache:
  321. StableDiffusionProcessing.cached_c = [None, None]
  322. StableDiffusionProcessing.cached_uc = [None, None]
  323. def get_token_merging_ratio(self, for_hr=False):
  324. if for_hr:
  325. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  326. return self.token_merging_ratio or opts.token_merging_ratio
  327. def setup_prompts(self):
  328. if isinstance(self.prompt,list):
  329. self.all_prompts = self.prompt
  330. elif isinstance(self.negative_prompt, list):
  331. self.all_prompts = [self.prompt] * len(self.negative_prompt)
  332. else:
  333. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  334. if isinstance(self.negative_prompt, list):
  335. self.all_negative_prompts = self.negative_prompt
  336. else:
  337. self.all_negative_prompts = [self.negative_prompt] * len(self.all_prompts)
  338. if len(self.all_prompts) != len(self.all_negative_prompts):
  339. raise RuntimeError(f"Received a different number of prompts ({len(self.all_prompts)}) and negative prompts ({len(self.all_negative_prompts)})")
  340. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  341. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  342. self.main_prompt = self.all_prompts[0]
  343. self.main_negative_prompt = self.all_negative_prompts[0]
  344. def cached_params(self, required_prompts, steps, extra_network_data, hires_steps=None, use_old_scheduling=False):
  345. """Returns parameters that invalidate the cond cache if changed"""
  346. return (
  347. required_prompts,
  348. steps,
  349. hires_steps,
  350. use_old_scheduling,
  351. opts.CLIP_stop_at_last_layers,
  352. shared.sd_model.sd_checkpoint_info,
  353. extra_network_data,
  354. opts.sdxl_crop_left,
  355. opts.sdxl_crop_top,
  356. self.width,
  357. self.height,
  358. opts.fp8_storage,
  359. opts.cache_fp16_weight,
  360. )
  361. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data, hires_steps=None):
  362. """
  363. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  364. using a cache to store the result if the same arguments have been used before.
  365. cache is an array containing two elements. The first element is a tuple
  366. representing the previously used arguments, or None if no arguments
  367. have been used before. The second element is where the previously
  368. computed result is stored.
  369. caches is a list with items described above.
  370. """
  371. if shared.opts.use_old_scheduling:
  372. old_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, False)
  373. new_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(required_prompts, steps, hires_steps, True)
  374. if old_schedules != new_schedules:
  375. self.extra_generation_params["Old prompt editing timelines"] = True
  376. cached_params = self.cached_params(required_prompts, steps, extra_network_data, hires_steps, shared.opts.use_old_scheduling)
  377. for cache in caches:
  378. if cache[0] is not None and cached_params == cache[0]:
  379. return cache[1]
  380. cache = caches[0]
  381. with devices.autocast():
  382. cache[1] = function(shared.sd_model, required_prompts, steps, hires_steps, shared.opts.use_old_scheduling)
  383. cache[0] = cached_params
  384. return cache[1]
  385. def setup_conds(self):
  386. prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
  387. negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
  388. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  389. total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps
  390. self.step_multiplier = total_steps // self.steps
  391. self.firstpass_steps = total_steps
  392. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data)
  393. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data)
  394. def get_conds(self):
  395. return self.c, self.uc
  396. def parse_extra_network_prompts(self):
  397. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  398. def save_samples(self) -> bool:
  399. """Returns whether generated images need to be written to disk"""
  400. return opts.samples_save and not self.do_not_save_samples and (opts.save_incomplete_images or not state.interrupted and not state.skipped)
  401. class Processed:
  402. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  403. self.images = images_list
  404. self.prompt = p.prompt
  405. self.negative_prompt = p.negative_prompt
  406. self.seed = seed
  407. self.subseed = subseed
  408. self.subseed_strength = p.subseed_strength
  409. self.info = info
  410. self.comments = "".join(f"{comment}\n" for comment in p.comments)
  411. self.width = p.width
  412. self.height = p.height
  413. self.sampler_name = p.sampler_name
  414. self.cfg_scale = p.cfg_scale
  415. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  416. self.steps = p.steps
  417. self.batch_size = p.batch_size
  418. self.restore_faces = p.restore_faces
  419. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  420. self.sd_model_name = p.sd_model_name
  421. self.sd_model_hash = p.sd_model_hash
  422. self.sd_vae_name = p.sd_vae_name
  423. self.sd_vae_hash = p.sd_vae_hash
  424. self.seed_resize_from_w = p.seed_resize_from_w
  425. self.seed_resize_from_h = p.seed_resize_from_h
  426. self.denoising_strength = getattr(p, 'denoising_strength', None)
  427. self.extra_generation_params = p.extra_generation_params
  428. self.index_of_first_image = index_of_first_image
  429. self.styles = p.styles
  430. self.job_timestamp = state.job_timestamp
  431. self.clip_skip = opts.CLIP_stop_at_last_layers
  432. self.token_merging_ratio = p.token_merging_ratio
  433. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  434. self.eta = p.eta
  435. self.ddim_discretize = p.ddim_discretize
  436. self.s_churn = p.s_churn
  437. self.s_tmin = p.s_tmin
  438. self.s_tmax = p.s_tmax
  439. self.s_noise = p.s_noise
  440. self.s_min_uncond = p.s_min_uncond
  441. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  442. self.prompt = self.prompt if not isinstance(self.prompt, list) else self.prompt[0]
  443. self.negative_prompt = self.negative_prompt if not isinstance(self.negative_prompt, list) else self.negative_prompt[0]
  444. self.seed = int(self.seed if not isinstance(self.seed, list) else self.seed[0]) if self.seed is not None else -1
  445. self.subseed = int(self.subseed if not isinstance(self.subseed, list) else self.subseed[0]) if self.subseed is not None else -1
  446. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  447. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  448. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  449. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  450. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  451. self.infotexts = infotexts or [info]
  452. self.version = program_version()
  453. def js(self):
  454. obj = {
  455. "prompt": self.all_prompts[0],
  456. "all_prompts": self.all_prompts,
  457. "negative_prompt": self.all_negative_prompts[0],
  458. "all_negative_prompts": self.all_negative_prompts,
  459. "seed": self.seed,
  460. "all_seeds": self.all_seeds,
  461. "subseed": self.subseed,
  462. "all_subseeds": self.all_subseeds,
  463. "subseed_strength": self.subseed_strength,
  464. "width": self.width,
  465. "height": self.height,
  466. "sampler_name": self.sampler_name,
  467. "cfg_scale": self.cfg_scale,
  468. "steps": self.steps,
  469. "batch_size": self.batch_size,
  470. "restore_faces": self.restore_faces,
  471. "face_restoration_model": self.face_restoration_model,
  472. "sd_model_name": self.sd_model_name,
  473. "sd_model_hash": self.sd_model_hash,
  474. "sd_vae_name": self.sd_vae_name,
  475. "sd_vae_hash": self.sd_vae_hash,
  476. "seed_resize_from_w": self.seed_resize_from_w,
  477. "seed_resize_from_h": self.seed_resize_from_h,
  478. "denoising_strength": self.denoising_strength,
  479. "extra_generation_params": self.extra_generation_params,
  480. "index_of_first_image": self.index_of_first_image,
  481. "infotexts": self.infotexts,
  482. "styles": self.styles,
  483. "job_timestamp": self.job_timestamp,
  484. "clip_skip": self.clip_skip,
  485. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  486. "version": self.version,
  487. }
  488. return json.dumps(obj)
  489. def infotext(self, p: StableDiffusionProcessing, index):
  490. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  491. def get_token_merging_ratio(self, for_hr=False):
  492. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  493. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  494. g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
  495. return g.next()
  496. class DecodedSamples(list):
  497. already_decoded = True
  498. def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
  499. samples = DecodedSamples()
  500. for i in range(batch.shape[0]):
  501. sample = decode_first_stage(model, batch[i:i + 1])[0]
  502. if check_for_nans:
  503. try:
  504. devices.test_for_nans(sample, "vae")
  505. except devices.NansException as e:
  506. if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
  507. raise e
  508. errors.print_error_explanation(
  509. "A tensor with all NaNs was produced in VAE.\n"
  510. "Web UI will now convert VAE into 32-bit float and retry.\n"
  511. "To disable this behavior, disable the 'Automatically revert VAE to 32-bit floats' setting.\n"
  512. "To always start with 32-bit VAE, use --no-half-vae commandline flag."
  513. )
  514. devices.dtype_vae = torch.float32
  515. model.first_stage_model.to(devices.dtype_vae)
  516. batch = batch.to(devices.dtype_vae)
  517. sample = decode_first_stage(model, batch[i:i + 1])[0]
  518. if target_device is not None:
  519. sample = sample.to(target_device)
  520. samples.append(sample)
  521. return samples
  522. def get_fixed_seed(seed):
  523. if seed == '' or seed is None:
  524. seed = -1
  525. elif isinstance(seed, str):
  526. try:
  527. seed = int(seed)
  528. except Exception:
  529. seed = -1
  530. if seed == -1:
  531. return int(random.randrange(4294967294))
  532. return seed
  533. def fix_seed(p):
  534. p.seed = get_fixed_seed(p.seed)
  535. p.subseed = get_fixed_seed(p.subseed)
  536. def program_version():
  537. import launch
  538. res = launch.git_tag()
  539. if res == "<none>":
  540. res = None
  541. return res
  542. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
  543. if index is None:
  544. index = position_in_batch + iteration * p.batch_size
  545. if all_negative_prompts is None:
  546. all_negative_prompts = p.all_negative_prompts
  547. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  548. enable_hr = getattr(p, 'enable_hr', False)
  549. token_merging_ratio = p.get_token_merging_ratio()
  550. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  551. uses_ensd = opts.eta_noise_seed_delta != 0
  552. if uses_ensd:
  553. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  554. generation_params = {
  555. "Steps": p.steps,
  556. "Sampler": p.sampler_name,
  557. "CFG scale": p.cfg_scale,
  558. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  559. "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
  560. "Face restoration": opts.face_restoration_model if p.restore_faces else None,
  561. "Size": f"{p.width}x{p.height}",
  562. "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
  563. "Model": p.sd_model_name if opts.add_model_name_to_info else None,
  564. "FP8 weight": opts.fp8_storage if devices.fp8 else None,
  565. "Cache FP16 weight for LoRA": opts.cache_fp16_weight if devices.fp8 else None,
  566. "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
  567. "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
  568. "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
  569. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  570. "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  571. "Denoising strength": getattr(p, 'denoising_strength', None),
  572. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  573. "Clip skip": None if clip_skip <= 1 else clip_skip,
  574. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  575. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  576. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  577. "Init image hash": getattr(p, 'init_img_hash', None),
  578. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  579. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  580. "Tiling": "True" if p.tiling else None,
  581. **p.extra_generation_params,
  582. "Version": program_version() if opts.add_version_to_infotext else None,
  583. "User": p.user if opts.add_user_name_to_info else None,
  584. }
  585. generation_params_text = ", ".join([k if k == v else f'{k}: {infotext.quote(v)}' for k, v in generation_params.items() if v is not None])
  586. prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
  587. negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
  588. return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
  589. def process_images(p: StableDiffusionProcessing) -> Processed:
  590. if p.scripts is not None:
  591. p.scripts.before_process(p)
  592. stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data}
  593. try:
  594. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  595. # and if after running refiner, the refiner model is not unloaded - webui swaps back to main model here, if model over is present it will be reloaded afterwards
  596. if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  597. p.override_settings.pop('sd_model_checkpoint', None)
  598. sd_models.reload_model_weights()
  599. for k, v in p.override_settings.items():
  600. opts.set(k, v, is_api=True, run_callbacks=False)
  601. if k == 'sd_model_checkpoint':
  602. sd_models.reload_model_weights()
  603. if k == 'sd_vae':
  604. sd_vae.reload_vae_weights()
  605. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  606. res = process_images_inner(p)
  607. finally:
  608. sd_models.apply_token_merging(p.sd_model, 0)
  609. # restore opts to original state
  610. if p.override_settings_restore_afterwards:
  611. for k, v in stored_opts.items():
  612. setattr(opts, k, v)
  613. if k == 'sd_vae':
  614. sd_vae.reload_vae_weights()
  615. return res
  616. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  617. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  618. if isinstance(p.prompt, list):
  619. assert(len(p.prompt) > 0)
  620. else:
  621. assert p.prompt is not None
  622. devices.torch_gc()
  623. seed = get_fixed_seed(p.seed)
  624. subseed = get_fixed_seed(p.subseed)
  625. if p.restore_faces is None:
  626. p.restore_faces = opts.face_restoration
  627. if p.tiling is None:
  628. p.tiling = opts.tiling
  629. if p.refiner_checkpoint not in (None, "", "None", "none"):
  630. p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
  631. if p.refiner_checkpoint_info is None:
  632. raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
  633. p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
  634. p.sd_model_hash = shared.sd_model.sd_model_hash
  635. p.sd_vae_name = sd_vae.get_loaded_vae_name()
  636. p.sd_vae_hash = sd_vae.get_loaded_vae_hash()
  637. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  638. modules.sd_hijack.model_hijack.clear_comments()
  639. p.setup_prompts()
  640. if isinstance(seed, list):
  641. p.all_seeds = seed
  642. else:
  643. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  644. if isinstance(subseed, list):
  645. p.all_subseeds = subseed
  646. else:
  647. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  648. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  649. model_hijack.embedding_db.load_textual_inversion_embeddings()
  650. if p.scripts is not None:
  651. p.scripts.process(p)
  652. infotexts = []
  653. output_images = []
  654. with torch.no_grad(), p.sd_model.ema_scope():
  655. with devices.autocast():
  656. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  657. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  658. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  659. sd_vae_approx.model()
  660. sd_unet.apply_unet()
  661. if state.job_count == -1:
  662. state.job_count = p.n_iter
  663. for n in range(p.n_iter):
  664. p.iteration = n
  665. if state.skipped:
  666. state.skipped = False
  667. if state.interrupted:
  668. break
  669. sd_models.reload_model_weights() # model can be changed for example by refiner
  670. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  671. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  672. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  673. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  674. p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
  675. if p.scripts is not None:
  676. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  677. if len(p.prompts) == 0:
  678. break
  679. p.parse_extra_network_prompts()
  680. if not p.disable_extra_networks:
  681. with devices.autocast():
  682. extra_networks.activate(p, p.extra_network_data)
  683. if p.scripts is not None:
  684. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  685. # params.txt should be saved after scripts.process_batch, since the
  686. # infotext could be modified by that callback
  687. # Example: a wildcard processed by process_batch sets an extra model
  688. # strength, which is saved as "Model Strength: 1.0" in the infotext
  689. if n == 0:
  690. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  691. processed = Processed(p, [])
  692. file.write(processed.infotext(p, 0))
  693. p.setup_conds()
  694. for comment in model_hijack.comments:
  695. p.comment(comment)
  696. p.extra_generation_params.update(model_hijack.extra_generation_params)
  697. if p.n_iter > 1:
  698. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  699. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  700. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  701. if p.scripts is not None:
  702. ps = scripts.PostSampleArgs(samples_ddim)
  703. p.scripts.post_sample(p, ps)
  704. samples_ddim = ps.samples
  705. if getattr(samples_ddim, 'already_decoded', False):
  706. x_samples_ddim = samples_ddim
  707. else:
  708. if opts.sd_vae_decode_method != 'Full':
  709. p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
  710. x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
  711. x_samples_ddim = torch.stack(x_samples_ddim).float()
  712. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  713. del samples_ddim
  714. if lowvram.is_enabled(shared.sd_model):
  715. lowvram.send_everything_to_cpu()
  716. devices.torch_gc()
  717. state.nextjob()
  718. if p.scripts is not None:
  719. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  720. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  721. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  722. batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
  723. p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
  724. x_samples_ddim = batch_params.images
  725. def infotext(index=0, use_main_prompt=False):
  726. return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
  727. save_samples = p.save_samples()
  728. for i, x_sample in enumerate(x_samples_ddim):
  729. p.batch_index = i
  730. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  731. x_sample = x_sample.astype(np.uint8)
  732. if p.restore_faces:
  733. if save_samples and opts.save_images_before_face_restoration:
  734. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
  735. devices.torch_gc()
  736. x_sample = modules.face_restoration.restore_faces(x_sample)
  737. devices.torch_gc()
  738. image = Image.fromarray(x_sample)
  739. if p.scripts is not None:
  740. pp = scripts.PostprocessImageArgs(image)
  741. p.scripts.postprocess_image(p, pp)
  742. image = pp.image
  743. mask_for_overlay = getattr(p, "mask_for_overlay", None)
  744. overlay_image = p.overlay_images[i] if getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images) else None
  745. if p.scripts is not None:
  746. ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
  747. p.scripts.postprocess_maskoverlay(p, ppmo)
  748. mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
  749. if p.color_corrections is not None and i < len(p.color_corrections):
  750. if save_samples and opts.save_images_before_color_correction:
  751. image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
  752. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
  753. image = apply_color_correction(p.color_corrections[i], image)
  754. # If the intention is to show the output from the model
  755. # that is being composited over the original image,
  756. # we need to keep the original image around
  757. # and use it in the composite step.
  758. original_denoised_image = image.copy()
  759. if p.paste_to is not None:
  760. original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
  761. image = apply_overlay(image, p.paste_to, overlay_image)
  762. if save_samples:
  763. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
  764. text = infotext(i)
  765. infotexts.append(text)
  766. if opts.enable_pnginfo:
  767. image.info["parameters"] = text
  768. output_images.append(image)
  769. if mask_for_overlay is not None:
  770. if opts.return_mask or opts.save_mask:
  771. image_mask = mask_for_overlay.convert('RGB')
  772. if save_samples and opts.save_mask:
  773. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
  774. if opts.return_mask:
  775. output_images.append(image_mask)
  776. if opts.return_mask_composite or opts.save_mask_composite:
  777. image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  778. if save_samples and opts.save_mask_composite:
  779. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
  780. if opts.return_mask_composite:
  781. output_images.append(image_mask_composite)
  782. del x_samples_ddim
  783. devices.torch_gc()
  784. if not infotexts:
  785. infotexts.append(Processed(p, []).infotext(p, 0))
  786. p.color_corrections = None
  787. index_of_first_image = 0
  788. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  789. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  790. grid = images.image_grid(output_images, p.batch_size)
  791. if opts.return_grid:
  792. text = infotext(use_main_prompt=True)
  793. infotexts.insert(0, text)
  794. if opts.enable_pnginfo:
  795. grid.info["parameters"] = text
  796. output_images.insert(0, grid)
  797. index_of_first_image = 1
  798. if opts.grid_save:
  799. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  800. if not p.disable_extra_networks and p.extra_network_data:
  801. extra_networks.deactivate(p, p.extra_network_data)
  802. devices.torch_gc()
  803. res = Processed(
  804. p,
  805. images_list=output_images,
  806. seed=p.all_seeds[0],
  807. info=infotexts[0],
  808. subseed=p.all_subseeds[0],
  809. index_of_first_image=index_of_first_image,
  810. infotexts=infotexts,
  811. )
  812. if p.scripts is not None:
  813. p.scripts.postprocess(p, res)
  814. return res
  815. def old_hires_fix_first_pass_dimensions(width, height):
  816. """old algorithm for auto-calculating first pass size"""
  817. desired_pixel_count = 512 * 512
  818. actual_pixel_count = width * height
  819. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  820. width = math.ceil(scale * width / 64) * 64
  821. height = math.ceil(scale * height / 64) * 64
  822. return width, height
  823. @dataclass(repr=False)
  824. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  825. enable_hr: bool = False
  826. denoising_strength: float = 0.75
  827. firstphase_width: int = 0
  828. firstphase_height: int = 0
  829. hr_scale: float = 2.0
  830. hr_upscaler: str = None
  831. hr_second_pass_steps: int = 0
  832. hr_resize_x: int = 0
  833. hr_resize_y: int = 0
  834. hr_checkpoint_name: str = None
  835. hr_sampler_name: str = None
  836. hr_prompt: str = ''
  837. hr_negative_prompt: str = ''
  838. force_task_id: str = None
  839. cached_hr_uc = [None, None]
  840. cached_hr_c = [None, None]
  841. hr_checkpoint_info: dict = field(default=None, init=False)
  842. hr_upscale_to_x: int = field(default=0, init=False)
  843. hr_upscale_to_y: int = field(default=0, init=False)
  844. truncate_x: int = field(default=0, init=False)
  845. truncate_y: int = field(default=0, init=False)
  846. applied_old_hires_behavior_to: tuple = field(default=None, init=False)
  847. latent_scale_mode: dict = field(default=None, init=False)
  848. hr_c: tuple | None = field(default=None, init=False)
  849. hr_uc: tuple | None = field(default=None, init=False)
  850. all_hr_prompts: list = field(default=None, init=False)
  851. all_hr_negative_prompts: list = field(default=None, init=False)
  852. hr_prompts: list = field(default=None, init=False)
  853. hr_negative_prompts: list = field(default=None, init=False)
  854. hr_extra_network_data: list = field(default=None, init=False)
  855. def __post_init__(self):
  856. super().__post_init__()
  857. if self.firstphase_width != 0 or self.firstphase_height != 0:
  858. self.hr_upscale_to_x = self.width
  859. self.hr_upscale_to_y = self.height
  860. self.width = self.firstphase_width
  861. self.height = self.firstphase_height
  862. self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
  863. self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
  864. def calculate_target_resolution(self):
  865. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  866. self.hr_resize_x = self.width
  867. self.hr_resize_y = self.height
  868. self.hr_upscale_to_x = self.width
  869. self.hr_upscale_to_y = self.height
  870. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  871. self.applied_old_hires_behavior_to = (self.width, self.height)
  872. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  873. self.extra_generation_params["Hires upscale"] = self.hr_scale
  874. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  875. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  876. else:
  877. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  878. if self.hr_resize_y == 0:
  879. self.hr_upscale_to_x = self.hr_resize_x
  880. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  881. elif self.hr_resize_x == 0:
  882. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  883. self.hr_upscale_to_y = self.hr_resize_y
  884. else:
  885. target_w = self.hr_resize_x
  886. target_h = self.hr_resize_y
  887. src_ratio = self.width / self.height
  888. dst_ratio = self.hr_resize_x / self.hr_resize_y
  889. if src_ratio < dst_ratio:
  890. self.hr_upscale_to_x = self.hr_resize_x
  891. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  892. else:
  893. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  894. self.hr_upscale_to_y = self.hr_resize_y
  895. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  896. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  897. def init(self, all_prompts, all_seeds, all_subseeds):
  898. if self.enable_hr:
  899. if self.hr_checkpoint_name and self.hr_checkpoint_name != 'Use same checkpoint':
  900. self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name)
  901. if self.hr_checkpoint_info is None:
  902. raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}')
  903. self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title
  904. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  905. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  906. if tuple(self.hr_prompt) != tuple(self.prompt):
  907. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  908. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  909. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  910. self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  911. if self.enable_hr and self.latent_scale_mode is None:
  912. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  913. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  914. self.calculate_target_resolution()
  915. if not state.processing_has_refined_job_count:
  916. if state.job_count == -1:
  917. state.job_count = self.n_iter
  918. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  919. state.job_count = state.job_count * 2
  920. state.processing_has_refined_job_count = True
  921. if self.hr_second_pass_steps:
  922. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  923. if self.hr_upscaler is not None:
  924. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  925. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  926. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  927. x = self.rng.next()
  928. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  929. del x
  930. if not self.enable_hr:
  931. return samples
  932. devices.torch_gc()
  933. if self.latent_scale_mode is None:
  934. decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
  935. else:
  936. decoded_samples = None
  937. with sd_models.SkipWritingToConfig():
  938. sd_models.reload_model_weights(info=self.hr_checkpoint_info)
  939. return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
  940. def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
  941. if shared.state.interrupted:
  942. return samples
  943. self.is_hr_pass = True
  944. target_width = self.hr_upscale_to_x
  945. target_height = self.hr_upscale_to_y
  946. def save_intermediate(image, index):
  947. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  948. if not self.save_samples() or not opts.save_images_before_highres_fix:
  949. return
  950. if not isinstance(image, Image.Image):
  951. image = sd_samplers.sample_to_image(image, index, approximation=0)
  952. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  953. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
  954. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  955. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  956. if self.latent_scale_mode is not None:
  957. for i in range(samples.shape[0]):
  958. save_intermediate(samples, i)
  959. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"])
  960. # Avoid making the inpainting conditioning unless necessary as
  961. # this does need some extra compute to decode / encode the image again.
  962. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  963. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  964. else:
  965. image_conditioning = self.txt2img_image_conditioning(samples)
  966. else:
  967. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  968. batch_images = []
  969. for i, x_sample in enumerate(lowres_samples):
  970. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  971. x_sample = x_sample.astype(np.uint8)
  972. image = Image.fromarray(x_sample)
  973. save_intermediate(image, i)
  974. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  975. image = np.array(image).astype(np.float32) / 255.0
  976. image = np.moveaxis(image, 2, 0)
  977. batch_images.append(image)
  978. decoded_samples = torch.from_numpy(np.array(batch_images))
  979. decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae)
  980. if opts.sd_vae_encode_method != 'Full':
  981. self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
  982. samples = images_tensor_to_samples(decoded_samples, approximation_indexes.get(opts.sd_vae_encode_method))
  983. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  984. shared.state.nextjob()
  985. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  986. self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
  987. noise = self.rng.next()
  988. # GC now before running the next img2img to prevent running out of memory
  989. devices.torch_gc()
  990. if not self.disable_extra_networks:
  991. with devices.autocast():
  992. extra_networks.activate(self, self.hr_extra_network_data)
  993. with devices.autocast():
  994. self.calculate_hr_conds()
  995. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  996. if self.scripts is not None:
  997. self.scripts.before_hr(self)
  998. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  999. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  1000. self.sampler = None
  1001. devices.torch_gc()
  1002. decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
  1003. self.is_hr_pass = False
  1004. return decoded_samples
  1005. def close(self):
  1006. super().close()
  1007. self.hr_c = None
  1008. self.hr_uc = None
  1009. if not opts.persistent_cond_cache:
  1010. StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
  1011. StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
  1012. def setup_prompts(self):
  1013. super().setup_prompts()
  1014. if not self.enable_hr:
  1015. return
  1016. if self.hr_prompt == '':
  1017. self.hr_prompt = self.prompt
  1018. if self.hr_negative_prompt == '':
  1019. self.hr_negative_prompt = self.negative_prompt
  1020. if isinstance(self.hr_prompt, list):
  1021. self.all_hr_prompts = self.hr_prompt
  1022. else:
  1023. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  1024. if isinstance(self.hr_negative_prompt, list):
  1025. self.all_hr_negative_prompts = self.hr_negative_prompt
  1026. else:
  1027. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  1028. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  1029. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  1030. def calculate_hr_conds(self):
  1031. if self.hr_c is not None:
  1032. return
  1033. hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y)
  1034. hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True)
  1035. sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name)
  1036. steps = self.hr_second_pass_steps or self.steps
  1037. total_steps = sampler_config.total_steps(steps) if sampler_config else steps
  1038. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.firstpass_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data, total_steps)
  1039. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.firstpass_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data, total_steps)
  1040. def setup_conds(self):
  1041. if self.is_hr_pass:
  1042. # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model
  1043. self.hr_c = None
  1044. self.calculate_hr_conds()
  1045. return
  1046. super().setup_conds()
  1047. self.hr_uc = None
  1048. self.hr_c = None
  1049. if self.enable_hr and self.hr_checkpoint_info is None:
  1050. if shared.opts.hires_fix_use_firstpass_conds:
  1051. self.calculate_hr_conds()
  1052. elif lowvram.is_enabled(shared.sd_model) and shared.sd_model.sd_checkpoint_info == sd_models.select_checkpoint(): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  1053. with devices.autocast():
  1054. extra_networks.activate(self, self.hr_extra_network_data)
  1055. self.calculate_hr_conds()
  1056. with devices.autocast():
  1057. extra_networks.activate(self, self.extra_network_data)
  1058. def get_conds(self):
  1059. if self.is_hr_pass:
  1060. return self.hr_c, self.hr_uc
  1061. return super().get_conds()
  1062. def parse_extra_network_prompts(self):
  1063. res = super().parse_extra_network_prompts()
  1064. if self.enable_hr:
  1065. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  1066. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  1067. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  1068. return res
  1069. @dataclass(repr=False)
  1070. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  1071. init_images: list = None
  1072. resize_mode: int = 0
  1073. denoising_strength: float = 0.75
  1074. image_cfg_scale: float = None
  1075. mask: Any = None
  1076. mask_blur_x: int = 4
  1077. mask_blur_y: int = 4
  1078. mask_blur: int = None
  1079. mask_round: bool = True
  1080. inpainting_fill: int = 0
  1081. inpaint_full_res: bool = True
  1082. inpaint_full_res_padding: int = 0
  1083. inpainting_mask_invert: int = 0
  1084. initial_noise_multiplier: float = None
  1085. latent_mask: Image = None
  1086. force_task_id: str = None
  1087. image_mask: Any = field(default=None, init=False)
  1088. nmask: torch.Tensor = field(default=None, init=False)
  1089. image_conditioning: torch.Tensor = field(default=None, init=False)
  1090. init_img_hash: str = field(default=None, init=False)
  1091. mask_for_overlay: Image = field(default=None, init=False)
  1092. init_latent: torch.Tensor = field(default=None, init=False)
  1093. def __post_init__(self):
  1094. super().__post_init__()
  1095. self.image_mask = self.mask
  1096. self.mask = None
  1097. self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier
  1098. @property
  1099. def mask_blur(self):
  1100. if self.mask_blur_x == self.mask_blur_y:
  1101. return self.mask_blur_x
  1102. return None
  1103. @mask_blur.setter
  1104. def mask_blur(self, value):
  1105. if isinstance(value, int):
  1106. self.mask_blur_x = value
  1107. self.mask_blur_y = value
  1108. def init(self, all_prompts, all_seeds, all_subseeds):
  1109. self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  1110. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  1111. crop_region = None
  1112. image_mask = self.image_mask
  1113. if image_mask is not None:
  1114. # image_mask is passed in as RGBA by Gradio to support alpha masks,
  1115. # but we still want to support binary masks.
  1116. image_mask = create_binary_mask(image_mask, round=self.mask_round)
  1117. if self.inpainting_mask_invert:
  1118. image_mask = ImageOps.invert(image_mask)
  1119. if self.mask_blur_x > 0:
  1120. np_mask = np.array(image_mask)
  1121. kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1
  1122. np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
  1123. image_mask = Image.fromarray(np_mask)
  1124. if self.mask_blur_y > 0:
  1125. np_mask = np.array(image_mask)
  1126. kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1
  1127. np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
  1128. image_mask = Image.fromarray(np_mask)
  1129. if self.inpaint_full_res:
  1130. self.mask_for_overlay = image_mask
  1131. mask = image_mask.convert('L')
  1132. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  1133. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  1134. x1, y1, x2, y2 = crop_region
  1135. mask = mask.crop(crop_region)
  1136. image_mask = images.resize_image(2, mask, self.width, self.height)
  1137. self.paste_to = (x1, y1, x2-x1, y2-y1)
  1138. else:
  1139. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  1140. np_mask = np.array(image_mask)
  1141. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  1142. self.mask_for_overlay = Image.fromarray(np_mask)
  1143. self.overlay_images = []
  1144. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  1145. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  1146. if add_color_corrections:
  1147. self.color_corrections = []
  1148. imgs = []
  1149. for img in self.init_images:
  1150. # Save init image
  1151. if opts.save_init_img:
  1152. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  1153. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False, existing_info=img.info)
  1154. image = images.flatten(img, opts.img2img_background_color)
  1155. if crop_region is None and self.resize_mode != 3:
  1156. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  1157. if image_mask is not None:
  1158. image_masked = Image.new('RGBa', (image.width, image.height))
  1159. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  1160. self.overlay_images.append(image_masked.convert('RGBA'))
  1161. # crop_region is not None if we are doing inpaint full res
  1162. if crop_region is not None:
  1163. image = image.crop(crop_region)
  1164. image = images.resize_image(2, image, self.width, self.height)
  1165. if image_mask is not None:
  1166. if self.inpainting_fill != 1:
  1167. image = masking.fill(image, latent_mask)
  1168. if add_color_corrections:
  1169. self.color_corrections.append(setup_color_correction(image))
  1170. image = np.array(image).astype(np.float32) / 255.0
  1171. image = np.moveaxis(image, 2, 0)
  1172. imgs.append(image)
  1173. if len(imgs) == 1:
  1174. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  1175. if self.overlay_images is not None:
  1176. self.overlay_images = self.overlay_images * self.batch_size
  1177. if self.color_corrections is not None and len(self.color_corrections) == 1:
  1178. self.color_corrections = self.color_corrections * self.batch_size
  1179. elif len(imgs) <= self.batch_size:
  1180. self.batch_size = len(imgs)
  1181. batch_images = np.array(imgs)
  1182. else:
  1183. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  1184. image = torch.from_numpy(batch_images)
  1185. image = image.to(shared.device, dtype=devices.dtype_vae)
  1186. if opts.sd_vae_encode_method != 'Full':
  1187. self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method
  1188. self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
  1189. devices.torch_gc()
  1190. if self.resize_mode == 3:
  1191. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  1192. if image_mask is not None:
  1193. init_mask = latent_mask
  1194. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  1195. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  1196. latmask = latmask[0]
  1197. if self.mask_round:
  1198. latmask = np.around(latmask)
  1199. latmask = np.tile(latmask[None], (4, 1, 1))
  1200. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  1201. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  1202. # this needs to be fixed to be done in sample() using actual seeds for batches
  1203. if self.inpainting_fill == 2:
  1204. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  1205. elif self.inpainting_fill == 3:
  1206. self.init_latent = self.init_latent * self.mask
  1207. self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
  1208. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  1209. x = self.rng.next()
  1210. if self.initial_noise_multiplier != 1.0:
  1211. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  1212. x *= self.initial_noise_multiplier
  1213. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  1214. if self.mask is not None:
  1215. blended_samples = samples * self.nmask + self.init_latent * self.mask
  1216. if self.scripts is not None:
  1217. mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
  1218. self.scripts.on_mask_blend(self, mba)
  1219. blended_samples = mba.blended_latent
  1220. samples = blended_samples
  1221. del x
  1222. devices.torch_gc()
  1223. return samples
  1224. def get_token_merging_ratio(self, for_hr=False):
  1225. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio