api.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. import base64
  2. import io
  3. import time
  4. import datetime
  5. import uvicorn
  6. from threading import Lock
  7. from io import BytesIO
  8. from gradio.processing_utils import decode_base64_to_file
  9. from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
  10. from fastapi.security import HTTPBasic, HTTPBasicCredentials
  11. from secrets import compare_digest
  12. import modules.shared as shared
  13. from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
  14. from modules.api.models import *
  15. from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
  16. from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
  17. from modules.textual_inversion.preprocess import preprocess
  18. from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
  19. from PIL import PngImagePlugin,Image
  20. from modules.sd_models import checkpoints_list
  21. from modules.sd_models_config import find_checkpoint_config_near_filename
  22. from modules.realesrgan_model import get_realesrgan_models
  23. from modules import devices
  24. from typing import List
  25. import piexif
  26. import piexif.helper
  27. def upscaler_to_index(name: str):
  28. try:
  29. return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
  30. except:
  31. raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
  32. def script_name_to_index(name, scripts):
  33. try:
  34. return [script.title().lower() for script in scripts].index(name.lower())
  35. except:
  36. raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
  37. def validate_sampler_name(name):
  38. config = sd_samplers.all_samplers_map.get(name, None)
  39. if config is None:
  40. raise HTTPException(status_code=404, detail="Sampler not found")
  41. return name
  42. def setUpscalers(req: dict):
  43. reqDict = vars(req)
  44. reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
  45. reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
  46. return reqDict
  47. def decode_base64_to_image(encoding):
  48. if encoding.startswith("data:image/"):
  49. encoding = encoding.split(";")[1].split(",")[1]
  50. try:
  51. image = Image.open(BytesIO(base64.b64decode(encoding)))
  52. return image
  53. except Exception as err:
  54. raise HTTPException(status_code=500, detail="Invalid encoded image")
  55. def encode_pil_to_base64(image):
  56. with io.BytesIO() as output_bytes:
  57. if opts.samples_format.lower() == 'png':
  58. use_metadata = False
  59. metadata = PngImagePlugin.PngInfo()
  60. for key, value in image.info.items():
  61. if isinstance(key, str) and isinstance(value, str):
  62. metadata.add_text(key, value)
  63. use_metadata = True
  64. image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
  65. elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
  66. parameters = image.info.get('parameters', None)
  67. exif_bytes = piexif.dump({
  68. "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
  69. })
  70. if opts.samples_format.lower() in ("jpg", "jpeg"):
  71. image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
  72. else:
  73. image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
  74. else:
  75. raise HTTPException(status_code=500, detail="Invalid image format")
  76. bytes_data = output_bytes.getvalue()
  77. return base64.b64encode(bytes_data)
  78. def api_middleware(app: FastAPI):
  79. @app.middleware("http")
  80. async def log_and_time(req: Request, call_next):
  81. ts = time.time()
  82. res: Response = await call_next(req)
  83. duration = str(round(time.time() - ts, 4))
  84. res.headers["X-Process-Time"] = duration
  85. endpoint = req.scope.get('path', 'err')
  86. if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
  87. print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
  88. t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
  89. code = res.status_code,
  90. ver = req.scope.get('http_version', '0.0'),
  91. cli = req.scope.get('client', ('0:0.0.0', 0))[0],
  92. prot = req.scope.get('scheme', 'err'),
  93. method = req.scope.get('method', 'err'),
  94. endpoint = endpoint,
  95. duration = duration,
  96. ))
  97. return res
  98. class Api:
  99. def __init__(self, app: FastAPI, queue_lock: Lock):
  100. if shared.cmd_opts.api_auth:
  101. self.credentials = dict()
  102. for auth in shared.cmd_opts.api_auth.split(","):
  103. user, password = auth.split(":")
  104. self.credentials[user] = password
  105. self.router = APIRouter()
  106. self.app = app
  107. self.queue_lock = queue_lock
  108. api_middleware(self.app)
  109. self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
  110. self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
  111. self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
  112. self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
  113. self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
  114. self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
  115. self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
  116. self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
  117. self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
  118. self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
  119. self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
  120. self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
  121. self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
  122. self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
  123. self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
  124. self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
  125. self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
  126. self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
  127. self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
  128. self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
  129. self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
  130. self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
  131. self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
  132. self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
  133. self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
  134. self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
  135. self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
  136. self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
  137. def add_api_route(self, path: str, endpoint, **kwargs):
  138. if shared.cmd_opts.api_auth:
  139. return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
  140. return self.app.add_api_route(path, endpoint, **kwargs)
  141. def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
  142. if credentials.username in self.credentials:
  143. if compare_digest(credentials.password, self.credentials[credentials.username]):
  144. return True
  145. raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
  146. def get_script(self, script_name, script_runner):
  147. if script_name is None:
  148. return None, None
  149. if not script_runner.scripts:
  150. script_runner.initialize_scripts(False)
  151. ui.create_ui()
  152. script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
  153. script = script_runner.selectable_scripts[script_idx]
  154. return script, script_idx
  155. def get_scripts_list(self):
  156. t2ilist = []
  157. i2ilist = []
  158. for a in scripts.scripts_txt2img.titles:
  159. t2ilist.append(str(a.lower()))
  160. for b in scripts.scripts_img2img.titles:
  161. i2ilist.append(str(b.lower()))
  162. return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
  163. def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
  164. script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
  165. populate = txt2imgreq.copy(update={ # Override __init__ params
  166. "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
  167. "do_not_save_samples": True,
  168. "do_not_save_grid": True
  169. }
  170. )
  171. if populate.sampler_name:
  172. populate.sampler_index = None # prevent a warning later on
  173. args = vars(populate)
  174. args.pop('script_name', None)
  175. with self.queue_lock:
  176. p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
  177. shared.state.begin()
  178. if script is not None:
  179. p.outpath_grids = opts.outdir_txt2img_grids
  180. p.outpath_samples = opts.outdir_txt2img_samples
  181. p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
  182. processed = scripts.scripts_txt2img.run(p, *p.script_args)
  183. else:
  184. processed = process_images(p)
  185. shared.state.end()
  186. b64images = list(map(encode_pil_to_base64, processed.images))
  187. return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
  188. def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
  189. init_images = img2imgreq.init_images
  190. if init_images is None:
  191. raise HTTPException(status_code=404, detail="Init image not found")
  192. script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
  193. mask = img2imgreq.mask
  194. if mask:
  195. mask = decode_base64_to_image(mask)
  196. populate = img2imgreq.copy(update={ # Override __init__ params
  197. "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
  198. "do_not_save_samples": True,
  199. "do_not_save_grid": True,
  200. "mask": mask
  201. }
  202. )
  203. if populate.sampler_name:
  204. populate.sampler_index = None # prevent a warning later on
  205. args = vars(populate)
  206. args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
  207. args.pop('script_name', None)
  208. with self.queue_lock:
  209. p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
  210. p.init_images = [decode_base64_to_image(x) for x in init_images]
  211. shared.state.begin()
  212. if script is not None:
  213. p.outpath_grids = opts.outdir_img2img_grids
  214. p.outpath_samples = opts.outdir_img2img_samples
  215. p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
  216. processed = scripts.scripts_img2img.run(p, *p.script_args)
  217. else:
  218. processed = process_images(p)
  219. shared.state.end()
  220. b64images = list(map(encode_pil_to_base64, processed.images))
  221. if not img2imgreq.include_init_images:
  222. img2imgreq.init_images = None
  223. img2imgreq.mask = None
  224. return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
  225. def extras_single_image_api(self, req: ExtrasSingleImageRequest):
  226. reqDict = setUpscalers(req)
  227. reqDict['image'] = decode_base64_to_image(reqDict['image'])
  228. with self.queue_lock:
  229. result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
  230. return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
  231. def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
  232. reqDict = setUpscalers(req)
  233. def prepareFiles(file):
  234. file = decode_base64_to_file(file.data, file_path=file.name)
  235. file.orig_name = file.name
  236. return file
  237. reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
  238. reqDict.pop('imageList')
  239. with self.queue_lock:
  240. result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
  241. return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
  242. def pnginfoapi(self, req: PNGInfoRequest):
  243. if(not req.image.strip()):
  244. return PNGInfoResponse(info="")
  245. image = decode_base64_to_image(req.image.strip())
  246. if image is None:
  247. return PNGInfoResponse(info="")
  248. geninfo, items = images.read_info_from_image(image)
  249. if geninfo is None:
  250. geninfo = ""
  251. items = {**{'parameters': geninfo}, **items}
  252. return PNGInfoResponse(info=geninfo, items=items)
  253. def progressapi(self, req: ProgressRequest = Depends()):
  254. # copy from check_progress_call of ui.py
  255. if shared.state.job_count == 0:
  256. return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
  257. # avoid dividing zero
  258. progress = 0.01
  259. if shared.state.job_count > 0:
  260. progress += shared.state.job_no / shared.state.job_count
  261. if shared.state.sampling_steps > 0:
  262. progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
  263. time_since_start = time.time() - shared.state.time_start
  264. eta = (time_since_start/progress)
  265. eta_relative = eta-time_since_start
  266. progress = min(progress, 1)
  267. shared.state.set_current_image()
  268. current_image = None
  269. if shared.state.current_image and not req.skip_current_image:
  270. current_image = encode_pil_to_base64(shared.state.current_image)
  271. return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
  272. def interrogateapi(self, interrogatereq: InterrogateRequest):
  273. image_b64 = interrogatereq.image
  274. if image_b64 is None:
  275. raise HTTPException(status_code=404, detail="Image not found")
  276. img = decode_base64_to_image(image_b64)
  277. img = img.convert('RGB')
  278. # Override object param
  279. with self.queue_lock:
  280. if interrogatereq.model == "clip":
  281. processed = shared.interrogator.interrogate(img)
  282. elif interrogatereq.model == "deepdanbooru":
  283. processed = deepbooru.model.tag(img)
  284. else:
  285. raise HTTPException(status_code=404, detail="Model not found")
  286. return InterrogateResponse(caption=processed)
  287. def interruptapi(self):
  288. shared.state.interrupt()
  289. return {}
  290. def skip(self):
  291. shared.state.skip()
  292. def get_config(self):
  293. options = {}
  294. for key in shared.opts.data.keys():
  295. metadata = shared.opts.data_labels.get(key)
  296. if(metadata is not None):
  297. options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
  298. else:
  299. options.update({key: shared.opts.data.get(key, None)})
  300. return options
  301. def set_config(self, req: Dict[str, Any]):
  302. for k, v in req.items():
  303. shared.opts.set(k, v)
  304. shared.opts.save(shared.config_filename)
  305. return
  306. def get_cmd_flags(self):
  307. return vars(shared.cmd_opts)
  308. def get_samplers(self):
  309. return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
  310. def get_upscalers(self):
  311. return [
  312. {
  313. "name": upscaler.name,
  314. "model_name": upscaler.scaler.model_name,
  315. "model_path": upscaler.data_path,
  316. "model_url": None,
  317. "scale": upscaler.scale,
  318. }
  319. for upscaler in shared.sd_upscalers
  320. ]
  321. def get_sd_models(self):
  322. return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
  323. def get_hypernetworks(self):
  324. return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
  325. def get_face_restorers(self):
  326. return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
  327. def get_realesrgan_models(self):
  328. return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
  329. def get_prompt_styles(self):
  330. styleList = []
  331. for k in shared.prompt_styles.styles:
  332. style = shared.prompt_styles.styles[k]
  333. styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
  334. return styleList
  335. def get_embeddings(self):
  336. db = sd_hijack.model_hijack.embedding_db
  337. def convert_embedding(embedding):
  338. return {
  339. "step": embedding.step,
  340. "sd_checkpoint": embedding.sd_checkpoint,
  341. "sd_checkpoint_name": embedding.sd_checkpoint_name,
  342. "shape": embedding.shape,
  343. "vectors": embedding.vectors,
  344. }
  345. def convert_embeddings(embeddings):
  346. return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
  347. return {
  348. "loaded": convert_embeddings(db.word_embeddings),
  349. "skipped": convert_embeddings(db.skipped_embeddings),
  350. }
  351. def refresh_checkpoints(self):
  352. shared.refresh_checkpoints()
  353. def create_embedding(self, args: dict):
  354. try:
  355. shared.state.begin()
  356. filename = create_embedding(**args) # create empty embedding
  357. sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
  358. shared.state.end()
  359. return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
  360. except AssertionError as e:
  361. shared.state.end()
  362. return TrainResponse(info = "create embedding error: {error}".format(error = e))
  363. def create_hypernetwork(self, args: dict):
  364. try:
  365. shared.state.begin()
  366. filename = create_hypernetwork(**args) # create empty embedding
  367. shared.state.end()
  368. return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
  369. except AssertionError as e:
  370. shared.state.end()
  371. return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
  372. def preprocess(self, args: dict):
  373. try:
  374. shared.state.begin()
  375. preprocess(**args) # quick operation unless blip/booru interrogation is enabled
  376. shared.state.end()
  377. return PreprocessResponse(info = 'preprocess complete')
  378. except KeyError as e:
  379. shared.state.end()
  380. return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
  381. except AssertionError as e:
  382. shared.state.end()
  383. return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
  384. except FileNotFoundError as e:
  385. shared.state.end()
  386. return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
  387. def train_embedding(self, args: dict):
  388. try:
  389. shared.state.begin()
  390. apply_optimizations = shared.opts.training_xattention_optimizations
  391. error = None
  392. filename = ''
  393. if not apply_optimizations:
  394. sd_hijack.undo_optimizations()
  395. try:
  396. embedding, filename = train_embedding(**args) # can take a long time to complete
  397. except Exception as e:
  398. error = e
  399. finally:
  400. if not apply_optimizations:
  401. sd_hijack.apply_optimizations()
  402. shared.state.end()
  403. return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
  404. except AssertionError as msg:
  405. shared.state.end()
  406. return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
  407. def train_hypernetwork(self, args: dict):
  408. try:
  409. shared.state.begin()
  410. shared.loaded_hypernetworks = []
  411. apply_optimizations = shared.opts.training_xattention_optimizations
  412. error = None
  413. filename = ''
  414. if not apply_optimizations:
  415. sd_hijack.undo_optimizations()
  416. try:
  417. hypernetwork, filename = train_hypernetwork(**args)
  418. except Exception as e:
  419. error = e
  420. finally:
  421. shared.sd_model.cond_stage_model.to(devices.device)
  422. shared.sd_model.first_stage_model.to(devices.device)
  423. if not apply_optimizations:
  424. sd_hijack.apply_optimizations()
  425. shared.state.end()
  426. return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error))
  427. except AssertionError as msg:
  428. shared.state.end()
  429. return TrainResponse(info="train embedding error: {error}".format(error=error))
  430. def get_memory(self):
  431. try:
  432. import os, psutil
  433. process = psutil.Process(os.getpid())
  434. res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
  435. ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
  436. ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
  437. except Exception as err:
  438. ram = { 'error': f'{err}' }
  439. try:
  440. import torch
  441. if torch.cuda.is_available():
  442. s = torch.cuda.mem_get_info()
  443. system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
  444. s = dict(torch.cuda.memory_stats(shared.device))
  445. allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
  446. reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
  447. active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
  448. inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
  449. warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
  450. cuda = {
  451. 'system': system,
  452. 'active': active,
  453. 'allocated': allocated,
  454. 'reserved': reserved,
  455. 'inactive': inactive,
  456. 'events': warnings,
  457. }
  458. else:
  459. cuda = { 'error': 'unavailable' }
  460. except Exception as err:
  461. cuda = { 'error': f'{err}' }
  462. return MemoryResponse(ram = ram, cuda = cuda)
  463. def launch(self, server_name, port):
  464. self.app.include_router(self.router)
  465. uvicorn.run(self.app, host=server_name, port=port)