123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import torch
- from packaging import version
- from einops import repeat
- import math
- from modules import devices
- from modules.sd_hijack_utils import CondFunc
- class TorchHijackForUnet:
- """
- This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
- this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
- """
- def __getattr__(self, item):
- if item == 'cat':
- return self.cat
- if hasattr(torch, item):
- return getattr(torch, item)
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
- def cat(self, tensors, *args, **kwargs):
- if len(tensors) == 2:
- a, b = tensors
- if a.shape[-2:] != b.shape[-2:]:
- a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
- tensors = (a, b)
- return torch.cat(tensors, *args, **kwargs)
- th = TorchHijackForUnet()
- # Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
- def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
- """Always make sure inputs to unet are in correct dtype."""
- if isinstance(cond, dict):
- for y in cond.keys():
- if isinstance(cond[y], list):
- cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
- else:
- cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
- with devices.autocast():
- result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
- if devices.unet_needs_upcast:
- return result.float()
- else:
- return result
- # Monkey patch to create timestep embed tensor on device, avoiding a block.
- def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
- """
- Create sinusoidal timestep embeddings.
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an [N x dim] Tensor of positional embeddings.
- """
- if not repeat_only:
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
- )
- args = timesteps[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
- else:
- embedding = repeat(timesteps, 'b -> b d', d=dim)
- return embedding
- # Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
- # Prevents a lot of unnecessary aten::copy_ calls
- def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
- # note: if no context is given, cross-attention defaults to self-attention
- if not isinstance(context, list):
- context = [context]
- b, c, h, w = x.shape
- x_in = x
- x = self.norm(x)
- if not self.use_linear:
- x = self.proj_in(x)
- x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
- if self.use_linear:
- x = self.proj_in(x)
- for i, block in enumerate(self.transformer_blocks):
- x = block(x, context=context[i])
- if self.use_linear:
- x = self.proj_out(x)
- x = x.view(b, h, w, c).permute(0, 3, 1, 2)
- if not self.use_linear:
- x = self.proj_out(x)
- return x + x_in
- class GELUHijack(torch.nn.GELU, torch.nn.Module):
- def __init__(self, *args, **kwargs):
- torch.nn.GELU.__init__(self, *args, **kwargs)
- def forward(self, x):
- if devices.unet_needs_upcast:
- return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
- else:
- return torch.nn.GELU.forward(self, x)
- ddpm_edit_hijack = None
- def hijack_ddpm_edit():
- global ddpm_edit_hijack
- if not ddpm_edit_hijack:
- CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
- unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
- CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
- CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
- CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
- if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
- CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
- CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
- CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
- first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
- first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
- # Always make sure inputs to unet are in correct dtype
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
- CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
- def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
- if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
- dtype = torch.float32
- else:
- dtype = devices.dtype_unet
- return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
- # Always make sure timestep calculation is in correct dtype
- CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
- CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
|